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CHAPTER I
INTRODUCTION

Solving large scale mathematical problems has been and will always be a
vital concern in many areas of life. This concern has led to an increased popular-
ity and explosive growth of numerical analysis. Numerical analysis is the theory
of constructing methods for approximating, in an efficient manner, the solutions
to mathematical problems. Existing methods are grouped into two types: direct
methods and iterative methods (Golub and Van Loan, 1983). Direct methods will
determine a solution exactly, up to the precision of accuracy of the computer, in a
finite number of steps. The goal of iterative methods is to start with an i.itial guess
of the solution and then improve the guess by the use of an updating step which
is called an iteration. A succession of iterations will produce a sequence of scalars
- real or complex numbers - or-vectors, as appropriate, which converges to a limit,
the solution. If the limit is not obtained in a finite number of iterations, it may be
approximated to a desired accuracy after a finite number of iterations. This study
will be concerned only with iterative methods.

Before the age of digital computers, methods requiring a large amount of com-
putational effort were impractical, if not totally unreasonable, to apply. However,
we now have the high speed computers available that allow us to solve large scale
problems to a high degree of accuracy. But we still have a problem: computer time
costs. Therefore, it was essential that the subject area of numerical analysis respond
to the overwhelming need for faster computation and reduced computer time. The

result was the development of sophisticated numerical methods called acceleration
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techniques. These techniques use the original sequence to produce a new sequence
which converges to the same limit as the original one, only faster.

An acceleration technique is presented in the form of what is called an ex-
trapolation algorithm (Skelboe, 1980). An extrapolation algorithm determines an
element of the second sequence from some desired number, say k, of consecutive

elements of the original sequence. In other words, assume our original sequence is

{zn} = {z0,21,22,...}.

We then extrapolate (compute) a second sequence, {y,}, by applying the algorithm

to the k terms and represent an extrapolation by the notation

Ypt+k-1 = EXT(zp’ To+13Tpp2yeeey zp-He—l), P= 0,1,2,...

The purpose of this study is to compare several of these acceleration tech-
niques. The techniques studied will include Wynn’s (1956) epsilon algorithm, the
modified epsilon algorithm (Cheng and Hafez, 1959), Cabay and Jackson’s (1976)
Miﬁimal Polynomial Extrapolation method (MPE), a matrix Full Rank Extrapola-
tion (FRE) originally developed by Henrici (1964) and modified to a Reduced Rank
Extrapolation (RRE) by Eddy (1979), and Anderson’s (1965) generalized secant
methods. In addition, a method derived by Aitken (1936-37) for scalars and mod-
ified for vectors by Jennings (1971) will be studied in the early chapters to help
establish notation and to set the pattern of how extrapolation algorithms will be
developed.

The focus of this study will be on acceleration techniques for finding the so-

lution of the problem

F(z) =0, (1)

where F is an operator on a scalar z or on a m-dimensional vector . The theory

will be developed in the beginning with the use of scalars; however, all theory will




quickly be related to vectors and by the end of the study our only concern will be
solving (1) operating on m-dimensional vectors.

For convenience, Equation (1) will be rewritten as
z = G(z), (2)

where G(z) = z — F(z)H(z) for any H such that, if s is a solution of (1), then
H(s) is finite and nonzero (Traub, 1964). If s is a solution of (1), then s is also a
solution of (2) and we have converted our problem to determining a fixed point s
of Equation (2). A sequence {z,} is produced from Equation (2) by the iterative
scheme

Zns1 = G(zn), n=0,1,..., (3)
where lim,_, 2, = s for a convergent sequence {z,}. The function G is referred
to as an iteration function. An iteration is, therefore, defined as computing z,4;
by Equation (3) for some non-negative integer n. An acceleration technique will
produce a new sequence {y»} which also converges to s, but faster than the original
sequence {z,}.

Sequences are generated several different ways. For scalars, there exist the
well-studied sequences produced by the partial sums of a series. Perhaps the best
known method for producing vector sequences is numerically solving the system of
linear equations

§=AZ 4, (4)
where A is an m x m matrix, # and b are m-dimensional column vectors with 5

constant. Hence, the basic iteration equation becomes
Ty = AL, + b= G(Z,). (5)

Vector sequences can also be generated by nonlinear problems: integral equations
and ordinary differential equations. Examples and test problems of varied form will

be presented throughout the thesis.




Equations (4) and (5) will be used extensively in later chapters in the devel-
opment of the acceleration methods. However, in practice, problems of this type
would normally be solved by other methods that will not be discussed in this paper.
The small linear problems, where the value of m in Equation (4) is small, would
be solved by a direct method called Gaussian elimination. There also exist efficient
special methods that will solve sparse linear problems of large dimension. However,
linear problems are quite useful for designing extrapolation models and testing the
algorithms. The small nonlinear problems would be solved, in practice, by Newton’s
method or an optimization method, for example, a quasi-Newton method. These
problems are most useful as test problems where the limit can only be estimated
and not found exactly. The domain of problems that will be most practical for the
methods presented in this study is medium-to-large-sized nonlinear problems. Fox
(1965), Ortega and Rheinboldt (1970), Varga (1962), and Young (1971) provide

further background material on these other methods.




CHAPTER II
MOTIVATIONAL EXAMPLES
Using Acceleration Techniques

Before developing the acceleration techniques, this chapter will be used to help
motivate interest. The motivation will come in two parts. First, it will be shown
how an acceleration technique can be used to find the limit of a sequence. It will
then be shown how the eigenvalues of the matrix A of the iteration Equation (5)
effect the convergence of the vector sequence {Z,}.

To start with, consider the scalar problem
F(z) =z — e %% =, (6)

with a solution of 0.7034674 for seven place accuracy. Figure 1 (page 6) is the
graph of F(z) on the interval [0,1]. The solution is found by solving the fixed point

solution of (2), where
z = e %% = G(z).
This will give an iteration equation of
Tppr = €05 = G(z,). (7)

Figure 2 (page 6) shows the graph of G(z) and the equation y = z on the inter-
val {0,1]. In addition, the figure illustrates graphically the convergence of the fixed
point problem (Conte and de Boor, 1980) with an initial value of zo = 0.5. If a solu-

tion of Equation (6) exists, then it will be the intersection of y = z and y = G(z). To
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find this point graphically, it is known that the point (z,-1,z,) must lic on the
graph of G(z). The next point, (€, Zn+1), can be found by drawing a line through
(Zn-1,z,) parallel to the z axis. This line intersects the graph of y = = at (za, ).
Now draw through this point the line parallel to the y axis. The intersection of this
line and the graph y = G(z) will be the point (2., G(z4)), 0r (Zn,Zn4+1). Continuing
this procedure will eventually lead us to the desired solution.

It is a fact, however, that not all fixed point iterations converge. It often
occurs that a mathematical problem has a unique and reasonable solution, but
when a numerical algorithm is devised to solve the problem, like the fixed point
iteration scheme, the resulting sequence of approximations diverges. However, there
are certain criteria that will insure convergence. It is not the intent of this paper
to discuss such criteria, but one can find good discussion for the linear case in
texts written by Henrici (1964) or by Conte and de Boor (1980). We will consider
divergent sequences after determining the solution of Equation (6).

Using (7) and zo = 0.5, a sequence {z,} is derived whose limit is the solution.
As shown in Table 1 (page 8), it requires 16 iterations before the sequence converges
to the correct value with seven decimal place accuracy. The correct digits for each
iterate are underlined. In addition, Table 1 gives the differences between consecutive
iterates and also the ratios of consecutive differences, denoted by u, = zny1 — zn
and r, = un/un_1, respectively. This information will help develop an acceleration
technique to apply to Equation (7) for comparison (Atkinson, 1972).

A closer look at the first few ratios of Table 1 shows that they seem to be con-
verging to a value of approximately —0.3517. The ratios for n > 9 no longer converge
due to rounding errors in determining z, and u, to seven places. Assuming that the
ratio is approximately constant after the fifth iteration, estimates for us through
u11, denoted by @,,n = 5,...,11, can be made by 4,4, = 4:i(7),:1 = 4,...,10, where

F =rq = —0.3512072 and %4 = u4. These estimates are given in Table 2 (page 9)




along with the actual values from Table 1.

TABLE 1.

ITERATED VALUES FOR EQUATION (7)

n Tn U= Tpi1 — T Tp = Un/Up-y
0 0.5000000 0.2788008
1 0.7788008 —0.1013378 ~0.3634773
2 0.6774630 0.0352108 —0.3474596
3 0.7126738 —0.0124371 —0.3532183
4 0.7002367 0.0043680 —0.3512072
5 0.7046947 —0.0015372 —0.3519230
6 0.7030675 0.0005406 —0.3516783
7 0.7036081 ~0.0001902 —-0.3518312
8 0.7034179 0.0000669 —0.3517350
9 0.7034848 —0.0000235 -0.3512705
10 0.7034613 0.0000083 —-0.3531914
11 0.7034696 —0.0000029 —0.3493975
12 0.7034667 0.0000010 —0.3448275
13 0.7034677 —0.0000004 —0.4000000
14 0.7034673 0.0000002 —0.5000000
15 0.7034575 —0.0000001 —0.5000000
16 0.7034674 0.0000000 0.0000000
17 0.7034674




TABLE 2

ESTIMATED AND ACTUAL VALUES FOR CONSECUTIVE
DIFFERENCES FOR EQUATION (7)

n fin = fin1(F) Un(r)
5 (0.0043680)7 = —0.0015340 —0.0015372
6 (—0.0015340)7 = 0.0005388 0.0005406
7 (0.0005388)7 = —0.0001892 —0.0001902
8 (—0.0001892)7 = 0.0000664 0.0000669
9 (0.0000664)7 = —0.0000233 —0.0000235
10 (—0.0000233)7 = 0.0000082 0.0000083
11 (0.6000082)7 = —0.0000029 —0.0000029

It is true that

Ty = $5+(36-‘2’5)+(z7—2e)+ cor 4+ (211 — 710)

Ts + us + ug + u7 + ug + ug + ujg.

Therefore, we can estimate z;; by

z3; ~ 0.7046047 — 0.001534 + 0.0005388 — 0.0001892 +
0.0000664 — 0.0000233 + 0.0000082 — 0.0000029

= 0.7034687.

Hence, using only information obtained from z3, 4, and z5; =}, has been determined
more accurately than the actual iterated z;;. Even though an estimate for zi, for
some positive integer k, may not always be more accurate than the iterated z,, the
estimate, z, will usually be a better approximation of the solution than z,, for

some p, p < k.




10

Generalizing the concept, assume z,_;, 2,1, and =, have been computed.
Also assume r, is approximately constant with # = r,_; = up_1/un-z2. Then the

solution can be approximated by viewing it as the limit, z,, of the sequence:

Too ~ zn+un+un+1+un+2+"'
X T, +u,._117+u,.17+u,.+117+ v
~ < -2 =3
R Tn+Un-1T + UnaT + UpqT + -
~ | =2, =3
= TpntUnay(F+7 47 +--4)

= zotuns (F/(1-7), IFI<1, (8)

since the series in parentheses is a geometric series. Substituting 7 = u,_;/un_»

and simplifying give

Zn — Un-1 ([Un-1/%n-2]/[(¥n-1/un-2) — 1])

4

Loo

= Tn— (un—l)z/(un-l - un-—Z)

(2!,. - Tp-1 )2
(zn - 3n—1) - (zn—l - zn—Z) ‘

= Z,—

(9)

This formula is Aitken’s A? formula (1936-37) for accelerating a convergent se-
quence. More information will be discussed concerning Aitken’s formula in Chapter
IV. However, based on the above development, one may assume that if Aitken'’s
method is applied to Equation (7) after the n*® iteration, a better estimate of the
solution can often be found with no additional iterations.

Aitken’s formula can be used as a sequence generator to derive a new sequence

{yn}. The new sequence is generated by Formula (9) rewritten as

2
(Tnts — Tni1)
b
LTnt2 — 2zn+1 + Tn

n=01,... (10)

Ynt+2 = Tpt2 —

In fact, (10) can be used to produce even a third sequence {z,} from {y,}. Apply-

ing this technique to the sequence derived from Equation (7), the resulting three
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sequences are shown in Table 3. One can see that the solution, to seven place ac-
curacy, is found after only five iterations. Generating sequences in this fashion is

called a static model and Table 3 is referred to as a static display.

TABLE 3
AITKEN’S COMPUTED VALUES FOR EQUATION (7)

n Tn Yn Zn

0 0.5000000

1 0.7788008

2 0.6774630 0.7044777

3 0.7126738 0.7035942

4 0.7002367 0.7034830 0.7034669
5 0.7046047 0.7034693 0.7034674

Equation (10) is written differently than the way it is given in many texts.
The difference is that the new term in {y,} is denoted by the subscript n+2 instead
of its usual subscript n. The reason for this change is that if we want to compare
terms of the two sequences for error, that is, their closeness to the exact answer,
then to compare the n** term of {y,}, call it y for the moment, to the nt* term of

{zn}, call it z, is unfair. This y cannot be computed until z,,, is available. If the

original sequence converges, not only should y have a smaller error than z, but so

should the next two terms following z in the original sequence. Therefore, what is

valuable is to compare y with £n4; in error. Hence, the n'* term of {y.} is referred
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to as Yyn42 so that when comparisons are made, the elements being compared will
have the same subscripts.

Now consider the geometric series

1+2+4+...
Then the sequence of partial sums is
1,3,7,..., or z,=-1+4+2" n=1,2,... (11)

If Aitken’s method is applied to Sequence (11), the resulting sequence is
-1,-1,-1,...

Hence, the acceleration technique determined the value —1 as the “limit” of a
divergent sequence. Shanks (1955) says the divergent sequence is “diverging from”
—1 and calls the value —1 the “antilimit” of (11).

As stated earlier, iterated sequences of some mathematical problems do not
converge. However, if the sequence has an antilimit, the antilimit is usually unique,
equal to the solution of the problem, and can usually be found by applying an ac-
celeration method to the original divergent sequence (Sidi, Ford, and Smith, 1986).
There are cases known where this is not true (Shanks, 1955); therefore, one must be
careful to ensure that the computed antilimit is, in fact, the solution. An example
where Aitken’s method gives erroneous results will be discussed in Chapter IV.

Th.e early leader in the use of divergent sequences to derive correct answers
was Euler (1707-1783). He maintained that if a function f gave rise to a series, then
the “sum” of the series should be f(z) for any z, even when the series diverged.
Even though his definition of the word “sum” exte:ided the normal definition of
a sum of a series, he felt quite comfortable with it since “the new definition ...

coincides with the ordinary meaning when a series converges...” (Bromwich, 1926,

p. 322).
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One may look at antilimits as the assigning of a number to a divergent se-
quence. This has been around for quite some time in mathematics in the form of
summability methods. There exists several methods of summability. Excellent ma-
terial on the subject matter may be found in texts written by Hardy (1949), Lubkin

(1952), Moore (1938), and Zygmund (1959).

Nlustrations of Convergence in Two Dimensions

Let us now look at the second motivational factor of this chapter. Consider

Equation (4) with dimension m = 2. Define 4 and b by

1.0 0.1 - 1.2
A= and b= . (12)
-0.5 04 -2.0

Using Equation (5) and the initial vector (1,1), a convergent sequence {Z,} of two-
dimensional vectors is generated that converges to the solution &= (10.4,-12.0)7.
Table 4 shows the first six terms of the sequence. The path of convergence of {z,}
to §'is shown in Figure 3 (page 14). The graph can be considered as a trajectory of

a moving particle originating at Z, and terminating at the solution.

TABLE 4
FIRST SIX TERMS OF THE GENERATED
SEQUENCE OF PROBLEM (12)

n Th n Tn
0 (1.000000, 1.000000) 3 (4.091000, —5.241000)
1 (2.300000, —2.100000) 4 (4.766900, —6.141900)

2 (3.290000, —3.990000) 5 (5.352710, —6.840210)
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2 4

X-A§(IS

Figure 3. Trajectory for Eigenvalues
0.9 and 0.5

The matrix A has eigenvalues ¢ = 0.9 and ¢; = 0.5 with associated eigenvectors

v = (1,-1)T and %, = (1, -5)7, respectively, which are also shown in Figure 3. The

trajectory of {Z,} shows that as £, converges to 3, the convergence is asymptotic

along the vector ¥. Since v" and v; are linearly independent, the vector Zp — § can

be written as a linear combination of these vectors. Hence,

- —
g — 8

= (-9.4,13.0)T = —8.5(1,-1)T - 0.9(1, -5)".

= —8.5v — 0.97;.

Using the fact that ¢ and v, are eigenvectors, it follows that

—
Ty —

i

w
I

s

&y

= A(%o - §) = —8.5(0.9)7 — 0.9(0.5)%,

(2.3,-2.1)7, and

= A(Z) — 3) = —8.5(0.9)*7 — 0.9(0.5)*%,



= (3.29,-3.99)T.
Continuing, it can be seen that the sequence {Z,} can be generated by the equation
Tp = &+ aq"v + a147 71,
where a = —8.5 and a; = —0.9. Assume that n =100. Then

2?100 = .;+ a(0.9)1°°5°+ 01(0.5)1001-)‘1

5+ (2.66 x 107%)a + (7.89 x 10™*V)a, 7.

Q

Since the last term is approximately zero, Z1po is primarily the sum of § and a
multiple of the eigenvector 4. So, as n increases, the convergence of the sequence is
controlled by the dominant eigenvalue, 0.9, resulting in the asymptotic convergence
along v. In addition, for n greater than 200, the coefficient of ¥ is less than 1 x 1078
which implies {Z,} has converged to § with seven place accuracy.

The problem can be generalized for dimension m where ¢, ¢2,...,¢m are the
eigenvalues of 4 with corresponding eigenvectors v1,%3,...,0m; and with the as-
sumption that unity is not an eigenvalue of A so that the problem has the unique

solution 3. Then for some scalars a;, the sequence {Z,} can be generated by

Fa=F+Y avigh, n=0,1,... (13)

m
i=1
If ¢, is the dominant eigenvalue and a; # 0, which will usually be true for the given
Zo, then the limit of {Z,} is 5’ provided |g1| < 1. If |g1| > 1, then {Z,} is a divergent
sequence and § is its antilimit. Therefore, assuming that {Z,} converges, it is the
dominant eigenvalue, call it ¢, that is of importance. The smaller the modulus of g,
the faster the convergence. However, if one or more eigenvalues have modulus close
to unity, then the convergence will be slow.

Figures 4 through 6 (pages 16 and 17) show other trajectories of the sequence

{Z.} generated by Equation (5) with dimension two. The matrix A and associated




16

eigenvalues for each figure are

Figure 4 Figure 5 Figure 6
-1.0 -0.2 1.0 -0.2 1.0 -1.0
A= A= A=
0.75 0.6 0.75 -0.6 1.0 -0.2
-0.9,0.5 ¢ = 09,-0.5 g= 04108

g =
In addition, the eigenvectors are graphed and labeled as v, for the eigenvector

corresponding to the dominant eigenvalue ¢ and referred to as the major eigen-
vector, and ¥;, the eigenvector corresponding to ¢q; and referred to as the mi-
nor eigenvector. Since the eigenvalues of the matrix A in Figure 6 are complex
conjugates, the eigenvectors are also complex and, hence, are not graphed. Fig-
ures 4 and 5 support the fact that the convergence of {Z,} is indeed asymp-

totic along the eigenvector v. Figure 6 suggests that the trajectory of {Z,} for

o'o. 2 4 .‘e
X-AXIS

Figure 4. Trajectory for Eigenvalues
~0.9 and 0.5




Figure 5. Trajectory for Eigenvalues
0.9 and 0.5

0.
X~AXIS
Figure 6. Trajectory for Eigenvalues
0.4+0.8:

17
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problems with complex eigenvalues is some form of a spiral. The trajectory of
another problem with complex conjugate eigenvalues is shown in Figure 7.a. Re-
turning to Figure 3, it shows a smooth monotonic convergence. This is not always
the case for two positive eigenvalues. However, as n continues to increase the conver-
gence will eventually become monotonic and resemble Figure 3. Figure 7.b shows
the trajectory of another problem with positive eigenvalues that initially begins
to “converge” along the minor eigenvector but eventually converges monotonically
along the major eigenvector. Figure 7.c shows an example of a trajectory for a
problem with two negative eigenvalues.

Comparing Figures 4 and 5, we see that both trajectories zig-zag across the
eigenvector associated with the negative eigenvalue. Because this is the major

eigenvector in Figure 4, the zig-zag motion dampens out as the sequence approaches

:

Sy
/ !
'

'

'

'

'

Fig. .?.c

Figure 7. Other Trajectory Examples
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5, and the convergence becomes almost linear along the major eigenvector. Figure
7.d shows the trajectory of a problem where the case is reversed and the graph
starts in an almost linear approach and eventually ends up in the zig-zag motion.
Why do the trajectories of these two problems differ?

From Equation (13), we have

m
:c,,—.i':Ea.,-tT,-q;‘, n=0,1,...

Since the left-hand side of the equation is the difference between the nt* term of
the sequence {Z,} and the solution 3, it will be referred to as the n*® error vector,

denoted by é,. For m = 2, the error vector can be rewritten as
gn = a1171q;‘ + aﬁ'q",

where ¢ is the dominant eigenvalue and v is the eigenvector associated with ¢. If

n = 0, then the initial error vector is
60 = 011-7‘1 + az?.

If a is sufficiently smaller than a,, then the dominant eigenvector for the first few
sequence elements will be v;. Therefore, the trajectory will start almost parallel
to ;. However, as n increase, the higher powers will result in a dampening of ¢;
and the dominant eigenvalue will cause a convergence in the direction of the major
eigenvector. Figure 4 shows the resulting trajectory for ¢ negative and ¢, positive.
If the signs of the eigenvalues are reversed, then the trajectory starts almost linearly

and terminates in a zig-zag fashion as shown in Figure 7.d.
Relaxation Factor

Up to this point, successive elements of the generated sequence {Z,} have been

found by using the iteration Equation (3). However, there is a variation of (3) that
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may be helpful in accelerating the convergence. This method uses a constant called
a relaxation factor to adjust the distance the iteration moves from the previous

sequence element. The new iteration equation is
Yns1 = Gu(¥n) = n + w(G(¥n) — ¥n)s (14)

wheren = 0,1,..., yo = 2o of Equation (5), and w > 0 is the relaxation factor. For
0 < w < 1, (14) is called vector under-relaxation, and for w > 1, (14) is referred to
as vector over-relaxation. With no restrictions on w, (14) is a parametric equation
for the line containing the points ¥, and G(§,). For w = 0 and 1, yn+1 equals 7,
and G(9n), respectively. If 0 < w < 1, gn41 is located on the line between 3 and
G(¥n)- f w > 1, Yny1 is still on the line; however, yn+1 is “beyond” G(7n), as viewed
form y,.

Returning to (14) and using Equation (5),

Gor1 = o+ w([Afn + 8] - §n)
= w(4g. + I-;) +(1-w)ga
= (wd +[1 — wl)g, + wb
= Auy. + wl;, (15)
where A, = wA + (1 — w)l. Equations (14) and (15) are equivalent iteration

equations.

Let ¢; and p;, ¢t = 1,...,m, be the eigenvalues of the matrices 4 and A4,,
respectively. Then
0 = det(A, —pl) =det(wd + [1 — w]l —pl)
= det(wA + 1 —w — p]I)

= w™det(d - [1 - (1 - p)/w]I).

Since w # 0, the eigenvalues of A must be ¢ =1—(1—p)/w. Hence, p = 1+w(q-1).

L
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Therefore, we have a parametric equation for a line through the point z =1 = (1,0)

and ¢ in the complex plane. Since

lp—1=1+w(g-1)-1] = |w(g - 1),

the distance between the eigenvalues of 4,, and the point z is w times the distance
between the eigenvalues of the matrix 4 and :z.

As a result, Equation (13) can be rewritten with a new set of eigenvalues.
By carefully choosing w, one may be able to conve:rt a divergent problem into a
convergent one. For example, if we have a two-dimensional problem with eigenval-
ues 0.5 and —1.5, then iteration Equation (5) will generate a divergent sequence.
However, the eigenvalues of iteration Equations (14) and (15) with a relaxation
factor of w = 0.5 are 0.75 and —0.25. Hence, by using Equation (14), one “may”
produce a convergent sequence even if some of the eigenvalues of 4 have moduli
greater than unity. The word may is used because there are cases where no value of
w will convert a divergent sequence into a convergent one; for example, a problem
with an eigenvalue of 2.0. For any value of w # 0, the modulus of the converted
eigenvalue will always be greater than unity. Figure 8 (page 22) shows the region
in the complex plane of eigenvalues of Equation (4) for which Equation (14) with

w = 0.5 generates a convergent sequence. The region can be described as
{p:|p—a| <4, wherea = —1 + 0i}.

Choosing w > 1 can also be useful on some occasions. Consider the two-
dimensional problem where the eigenvalues are 0.6 and 0.9. Even though the itera-
tion equation will produce a convergent sequence, because the dominant eigenvalue
is close to unity, the convergence will be slow. A relaxation factor of v = 2 will
transform the problem into an equivalent problem with eigenvalues 0.2 and 0.8.

Hence, the transformation has a smaller dominant eigenvalue, resulting in faster
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Ip’[l <4

—L ! ! } X-AXIS

Figure 8: Eigenvalue Region of A Resulting
in Convergent Sequences or
Ay, w=0.5

convergence.

One must show care in choosing w. There are problems where a relaxation
factor less than unity can cause a convergent sequence to converge slower or a relax-
ation factor greater than unity can cause a convergent sequence to diverge. Consider
the sequence generated by (5) with eigenvalues 0.8 and —0.2. Using Equation (14)
and w = 0.5, the transformation problem has eigenvalues 0.9 and 0.4. The trans-
formed problem has a dominant eigenvalue closer to unity; hence, the convergence
is slower. If w = 2.0, the transformation problem has eigenvalues 0.6 and —1.4,
resulting in a divergent problem. Unless otherwise stated, the results given in this

study will be for w = 1.




CHAPTER III
GENERALIZED INVERSES

Before we continue with acceleration methods, there is an area that needs
extended coverage beyond that which is available in a normal course of matrix
theory or linear algebra. This area is the theory and applications of what is called
a generalized inverse of a matrix.

Let A be a square m x m matrix with rank R(4) = m. Then we know that
there exists a unique matrix B, called the inverse of A4, such that AB = B4 = I,
where I,, is the identity matrix of order m. The inverse of A is normally denoted
by A~!. Hence, given the square m x m matrix 4 and the m-dimensional vector 7,

then the solution of a set of consistent linear equations
y=AZ (16)

is (A™')y = (A"')(AZ) = I,z = £. I A has an inverse, then A is said to be
nonsingular; otherwise, A is singular. If A is a rectangular matrix, then no such
matrix B exists as the inverse of A and, thus, a simple expression of a solution of
(16) in terms of A is more difficult.

Moore (1920) extended the normal concept of inverses to singular and rectan-
gular matrices. However, the theoretical properties of these matrices were not fully
investigated until 1955, when Penrose defined a uniquely determined inverse matrix
for any matrix A which he called the generalized inverse. Moore’s and Penrose’s
inverses are equivalent when the inner product of the two m-dimensional vectors

Z=(z1,...,2m)7,7=(%1,...,ym)T is defined by

23
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m
ED =G = %=,
=1

where 7 * indicates the complex conjugate transpose of 3 and §; is the complex

conjugate of y;. Penrose’s definition of a generalized inverse is as follows:

Definition: For any matrix A4, square or rectangular, real or complex, there exists a

unique matrix G satisfying the conditions

(1) AGA=4 (2) GAG =G
(3) (AG)* = AG (4) (GA)* = GA.

(17)

G is called the Moore-Penrose generalized inverse of A.

With the use of generalized inverses, we can extend the concept of solving (16)
where A is a m x k matrix of rank r, » = k < m, ¥ is a m-dimensional vector, and
z is a k-dimensional vector. If » = k = m, A is nonsingular and the problem is
as before with a solution of ¢ = (4!)y. If m # k, then £ = GY, where G is the
unique solution of Equations (17). However, as Penrose pointed out, a solution of
(16) does no: require a matrix G which satisfies all the conditions of (17). One can
find a solution of (16) which satisfies only condition (1) of (17). Given y = AZ, then
AGY = AGAZ = AZ. Therefore, ¢ = Gy.

Some authors refer to generalized inverses by other names. Greville (1959) and
Rohde (1964) prefer the use of the name “pseudo-inverses.” Rao (1965) referred to
them frequently as the “Moore-Penrose inverses.” Albert (1972) combines the names
together and calls them the “Moore-Penrose pseudo-inverse.” In addition, different
names are given to matrices which satisfy one or more of the conditions of (17).

In this study, generalized inverses will refer to those matrices that satisfy at least

condition (1) of (17).
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Generalized inverses of matrices satisfying condition (1) of (17) are not unique
(Pringle and Rayner, 1971). Let A be a m x k matrix. If R(4) = m, then a

generalized inverse of A is
G = (VA*)(AV A*)™T,

where V is an arbitrary matrix such that R(AV A*) = R(A). G is called a right

inverse of A in this case. If R(A) = k, then a generalized inverse of 4 is
G = (AW Ay 4"V, (18)

where V is an arbitrary matrix such that R((A*)V A) = R(A4). G is called a left
inverse of A for this case.
Returning to the problem (16), when A4 is a m x k matrix of rank r = k < m,

we can find a solu‘ion to the problem by using generalized inverses. Hence,
=1 =GAZ =Gy
where G is of the form (18). A simple choice for V is V' = I, such that
G =(A"A)714". (19)

Henceforth, the definition of the generalized inverse of the m x k matrix 4, k < m,

is the k x m matrix G as defined in (19) with the notation G = A*.



CHAPTER IV

AITKEN’S A? METHOD FOR
SCALARS AND VECTORS

Theory for Scalars

Aitken’s A? method was introduced in Chapter II to help solve Equation (6).
Consider Equation (8) applied to a geometric series where {z,} is the sequence of
partial sums. Then the ratio, r, is constant and, hence, (8) can be written as the

sum

s=zn+un_1( ), |r| < 1.

1-r

Substituting un-1 = PUua—2 = 7™ lug and up = =, — To = rz, gives

s = =z +ur"'1( T )—z: +( Yo )r“
o 0 1-7/ ™" l1—7r

= z,+ ( ZoT )r". (20)
l1—-r

Therefore, for |r| < 1, z, — s = cr™, where

—ToT
1-r

So, there exist constants s and r such that as n increases by one, the distance from
z, to s is multiplied by r. It is easy to see that if |r| < 1, then ™ goes to zero as
n increases, which implies that s is the limit of the sequence {z,}. If r = —1 or
ir| > 1, then s is the antilimit of {z,}. This is a special case of Equation (13).

If we assume that there exists a constant p # s such that z, — p = dr™, for

some constant d, then

26
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dr* =z, —~p=s+cr" —p.

Hence, s — p = (d — ¢)r™ = br™. Since s and p are constants, br™ must remain
constant as n increases; hence, b = 0. So s — p = 0, which implies s = p. Therefore,
8 is unique.

Written below is (10) in a slightly different form and two variations:

2
Un41
Yn+2 = ZTny2 — % (21)
Tnlnt2 — 1‘,2;+1
(zﬂ+2 - Zn+1) - (zn+1 - 2:,-,)
(un)?
(va)

where v, = z,41 — z, and v, = (Tnt2 — Tnt+1) — (Tns1 — Tn) are defined as the

(22)

= zﬂ_

(23)

forward difference operators. Formula (21) is the most desirable one for a convergent
sequence using floating point arithmetic since z,,, is a better estimate of the limit
than z, and the computed error, z,,; — 3, is smaller than the computed error,
z, —s. On the other hand, if s is the antilimit, then (23) should be the choice.
Aitken (1936-37) used (22), but apparently never used an automated computer and
could monitor rounding errors “visually” at each step.

If the sequence {z,} is such that the ratios of consecutive errors converge to a
nonzero constant, independent of n, then (20) still holds, where r is the limit of the
ratios. Therefore, Equations (21) through (23) will also hold as an estimate for s
and we can apply Aitken’s method to approximate the limit of the sequence. This

amounts to having what is called linear convergence if |r| < 1.

DEFINITION: Given the convergent sequence {z,} and its limit s. If

. En41
lim —= = C,

n—oo en

|
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where e, = z, — s is the error of the nth element and |C| < 1, then the sequence

{z.} converges linearly to s.

The question now arises as to what happens if the ratios of consecutive errors
approach a C outside of the open interval (—1,1). It can be shown that if C = 1,
then the denominators of Equations (21) through (23) go to zero. Hence, the A?
method will not work well if the ratios converge to 1. If C' is —1 or outside the
closed interval [—1,1], we do not have convergence, but the method can still be
used in hopes of finding the antilimit of the sequence.

It was shown in Chapter II how Aitken’s A% method can be used in the static
sense to accelerate a scalar sequence. However, a modification of this method is to
compute the extrapolated value z;, by applying Aitken’s method to zq,z;, and z,.
Using z, as the initial value, generate two iterates z; and z). Extrapolating again,
we determine the value z and continue the pattern until convergence. A procedure
following this type of pattern: iterating, extrapolating, and then iterating the result,
is referred to as a repeated method or a semi-dynamic extrapolation model. Figure 9
(page 29) shows a diagram of a semi-dynamic procedure where EXT(z,, Zns1, Tns2)

implies applying the extrapolation method to the values in parentheses.
Vector Theory

For a sequence of vectors, Aitken (1936-37) applied the extrapolation technique

h

componentwise. In other words, if 2,4 = 1,...,m, represents the :** component

of the vector Z, then (10) becomes

o (F9.-z8)

() -
Ynt2 =T pi2 — - ~ (i ~ (i
7L, - 230, + 27

n=0,1,...

The major problem with this technique is that the computation of one or more

component elements may involve a denominator of zero, which obviously results
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Lo
T
z, EXT(zo,z1,22) = =z
!

T3

! ! ! 1 "
z, EXT(z,z4,zy) = =z etc.

Figure 9. Diagram of Semi-Dynamic Model

in an invalid element in our new sequence. In addition, since the convergence of
the components of a vector is usually related to one another, anolying the tech-
nique componentwise loses this relationship and may result in some components
accelerating the “wrong” way, in the direction opposite to the majority.

Jennings (1971) modified Aitken’s vector methcd for the linear case to help
prevent the possibility of this infinite or even erratic result. He used a vector w to

help define a rate of decay between z,,, and Z,,;. His iterative method is

g= 5,.,.*.2 + Q(En+2 - 5n+1)) n= 0, 1, ceey (24)

where

0 = T)(Ensr = Fnrs)

= —— — v , 25
) Fors — %Frs 7 20) (25)

W* represer®s the complex conjugate transpose of w, and ¢ represents either g,

of Equation (10) or Z ; , depending upon whether the model used is static or
semi-dynamic.

In order to discuss possible choices of w* Jennings’ work, some definitions are
needed. Because a m-dimensional vector consists of m components, it is convenient
to have some method of determining its size. This measurement is provided by

assigning to a vector a real-valued, nonnegative number known as a norm. However,
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the assignment is not unique since there exist several norms. For purposes of this

study, only two norms will be used: the infinity norm {co-norm) and the Euclidean

norm (2-norm). Given the vector Z = (21,...,zm)7, the two norms are respectively
defined as
£l = max |2;[, i=1,...,m; and
m 1/2
2l = (S ar)
=1

Jennings gave two choices for w. The first choice is when the iterative sequence
is governed by a symmetric matrix A. For this case, Jennings suggested the vector

W = T, — &py1 and referred to the formula as First Difference Modulation (FDM).

Given the scalars a;,7 = 1,...,m, such that
m

Top— 8= Z a; Vi,
i=1

where 7; is the eigenvector corresponding to the eigenvalue g¢; of the iterative matrix

A, he showed that

E:’;o g Z
ol = q.')Z,"

where z; = ¢?*(1 — ¢;)%a? > 0. Since all eigenvalues of 4 must have moduli less than

Q=

unity for convergence, Q cannot have a zero denominator except when convergence
is obtained.

Jennings’ second choice for w, Second Difference Modulation (SDM), is when
the sequence is govc;rned by a nonsymmetric matrix. For this case he chose
W = Tp42 —2&n+1 +Zpn. Thus the denominator is the square of the Euclidean norm of
the second difference vector. Hence, the denominator cannot result in zero unless,
once again, convergence is obtained. It should be added that for nonlinear cases
there is no guarantee that the denominator will not be zero.

The importance of @ in Equation (24) is to specify the distance of the current

extrapolation as a multiple of the last difference vector, £,+2 — Tp+1. Though
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Jennings’ two suggestions come raturally from Aitken’s formula, values for @ can
be found by other effective methods. Chandler (1987) suggests two other methods
for determining @, that based on results obtained on test problems in Chapter XI
work as well, if not better in some cases, than Jennings’ suggestions. First, define

Q as the quotient of Euclidean norms:

(| &nt2 — Tntall2
= (sign)—— — — 26
Q ( g )”zn+2 — 23,;.‘,.1 + zn”Z’ ( )

where sign = 1 except when the cosine of the angle between the difference vectors,
Tpyz — Tns1 and Tpy1 — Ty, is negative or the norm of (£,4+1 — T, ) is less than the
norm of (Zny2 — Tn+1). In these cases set sign = —1. His second suggestion is

" ||@ntz — Znsallz £ || Tns1r — Znll2’

where the denominator is a sum if the cosine of the difference vectors is negative
and a subtraction, otherwise.

The key to these four variations is that they all extrapolate along the vector
Tp+2 — Th+1. Therefore, it is essential for efficient operation of the algorithm that
the cosines of the difference vectors converge to either plus or minus unity. If the
cosine equals plus or minus unity, then all four methods give precisely the same
results, which is also the same result as componentwise Aitken. However, there
exist problems where all four suggested methods for determining @ work poorly.
One example is where the dominant eigenvalues are complex, resulting in a spiral-
ing convergence, see Figure 6. A second example is where a single real eigenvalue
does not dominate, e.g., the two-dimensional problem with eigenvalues of 0.8 and
—0.8 where the cosine of the angle between consecutive difference vectors is con-
stant, approximately —0.42753, see Figure 10 (page 32). However, Jennings pointed
out that this case can be handled very well by taking successive pairs of the ba-

sic iteration to form new basic iterations to accelerate, i.e., accelerate the sequence
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cos © T -0.42753

Y-AXIS

»
n

- 8 ® " x-axs

Figure 10. Trajectory for Eigenvalues 0.8, —0.8

{#n} where §, = 3, OF Yo = T2n41, 7 = 0,1,... This effectively squares all of the
eigenvalues of the iteration matrix (Jennings, 1971). Fortunately, many practical
iterations are dominated by a single real eigenvalue, and the vector Aitken method
with the Q) suggestions of Jennings and Chandler are often effective in these cases. In
addition, Aitken’s method will not work tremendously well on divergent sequences
since the method is trying to approximate the solution along the vector Zpi13 — Zp41.
Chen (1984) suggests interchanging the vectors Z,, and £, in equation (24). Hence,
the extrapolation will be along the vector Z, — Zn41.

Combining Equation (24) with Aitken’s repeated model, a semi-dynamic al-
gorithm for vectors results. Henceforth, when vector Aitken’s method is mentioned,

it is referring to this algorithm. Unless otherwise stated, @ will be Jennings’ SDM.
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AITKEN’S SEMI-DYNAMIC ALGORITHM 4.1:

Find a solution to £ = G(Z) given the initial approximation vector Zo. Define
the terminology “If converged” to mean “If ||§ — Z|| < Tol, where Tol is some

predetermined tolerance value and & and ¥ are the vectors of the current step.”

Step 1. Compute £, = G(Zp).

Step 2. Compute Z; = G(Z;). If converged, stop; otherwise, go to step 3.

Step 3. Find §¥ = Z; — Q(Z; — £1), where Q is defined by Equation (25), (26),
or (27).

Step 4. Compute = G(¥). If converged, stop; otherwise, set £, = 7,

—

1 = Z and go to step 2.

One may use any norm desired for the stopping criterion. There are advan-
tages and disadvantages for all of them. The Euclidean norm will show a smoothness
in the differences as they approach the tolerance value. However, the use of this
norm could result in system overflow due to the squaring of the difference compo-
nents unless care is taken in computing Q. The infinity norm is simply the largest
component of the difference vector, ¥ — Z. It is not as smooth as the Euclidean
norm since the largest component may be a different component from one iteration
to the next. However, due to its simplicity, results in this study are based on the
infinity norm of the difference vector.

In addition, there are other stopping criteria which may be used:

1§~ &Il < (Tol)||gll, §#0, and [|F(§)] < Tol,

where F(Z) = 0. Unfortunately, difficulties can arise no matter which of the stop-
ping criteria we use. For example, the sequence defined by z, = Sp_,(1/k) is
divergent but lim,_co(Zn — a-1) = 0. This sort of harmonic convergence is “sub-

linear” (Brent, 1972) and, ordinarily, is never encountered in practical fixed point
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problems. For purpose of this study, the stopping criterion for all algorithms will

be as stated in Algorithm 4.1.
Numerical Examples

As an example of the vector Aitken method, consider the two-dimensional

problem of finding the solution to the system

z = A(sinz)+ B(cosy) and (28)
y = A(cosz)— B(siny),
where A = 0.7, B = 0.2, and z¢ = yo = 0 (Henrici, 1964). The iteration function
then becomes
ZTpy1 = A(sinz,)+ B(cosy,) and
Ynt1 = A(cosz,)— B(sinyn).
After thirty-one iterations, we obtain the solution vector to five decimal places,
(0.52652,0.50792). If we apply vector Aitken in static form, we obtain the solution
to the same degree of accuracy in 12 iterations. Table 5 (page 35) shows the
Euclidean norm of the error vector, denoted by E{) = ||z(!) — s||,, where the i*
column represents the sequence derived by applying Aitken’s method 7 times. The
zero column is the original iteration sequence.

Using Aitken’s method semi-dynamically, Algorithm 4.1, the same results are
obtained in 15 iterations, Table 6 (page 36). However, Anderson (1965, p. 551) says
that Aitken’s method “is considerably less effective if applied statically, ... than it
is if applied dynamically.” The static model requires 32 extrapolations to only 6
for the semi-dynamic model. Therefore, the benefit of 3 fewer iterations is loss due
to the time required to perform 26 additional extrapolations. In addition, since
the number of column sequences are not known beforehand for the static method,

the semi-dynamic method does not require the allocation of storage space to ensure
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TABLE 5

AITKEN’S STATIC METHOD APPLIED TO PROBLEM (28)
WITH RESULTS AS EUCLIDEAN NORM
OF ERROR VECTOR

n E® EY E® E® E®  EY
0 0.53521
1 0.37883

2 0.23961 0.25854
3 0.16527 0.16557
0.11013 0.07612 0.01575

[ L B

0.73253 0.00578 0.31493
6 0.04820 0.00328 0.00336 0.15449
0.03156 0.00154 0.00182 0.00181
8 0.02058 0.00077 0.00041 0.00062 0.00061
9 0.01338 0.00032 0.00005 0.00015 0.00062
10 0.00868 0.00014 0.00004 0.00003 0.00001 0.00021
11 0.00563 0.00006 0.00001 0.00001 0.00001 0.00001
12 0.00365 0.00003 0.00000 0.00000

enough columns for convergence. Thus, the semi-dynamic model is usually more
efficient than the static model.

Irons and Shrive (1987) made a modification to Aitken’s method for scalars.
Assume that we have the two relations y; = G(yo) and y3 = G(y2), that the ratio
of consecutive error terms is constant, and that s is the limit of the sequence {y,}.

Then the following is true:

_ -8 _ Yys—s

r .
Yo— S Y2 — 8
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TABLE 6

AITKEN’S SEMI-DYNAMIC METHOD
APPLIED TO PROBLEM (28)

n E, n E, n E,

1 0.37883 6 0.00393 11 0.00005
2 0.23961 7 0.00291 12 0.00004
3 0.17611 8 0.00189 13 0.00001
4 0.11835 9 0.00016 14 0.00001
5 0.00734 10 0.00010 15 0.00000

Solving for s gives

(3/2 - ys)(y1 - ya)
(Yo =) — (v2 — ys)

We can use (29) as a model iteration formula for estimating the limit of a

$=VYs— (29)
sequence for which the ratios of consecutive errors converge to a constant. Given

the scalars yg, 1,2, and y3; then

_ (yn+2 - yn+3)(yn+1 - yn+3) d
Yn+a = Yny3z — an
(yn - yn+1) - (yn+2 - yn+3)

Ynts = G(yn+4), n= 0, 2, 4, ‘ee (30)

Formula (30) gives us a third type of model, a fully dynamic method. Study-
ing the diagram of the dynamic model in Figure 11 (page 37), we see that each
extrapolation after the first one uses only one additional iterate and data obtained
from previous iterations. A dynamic model does not require restarting our pro-
cedure by generating all necessary iterates from the latest extrapolation. We will
see in later chapters the advantages of this model. Given the sequence {z,}, we

may apply Irons and Shrive’s dynamic model after two iterations by setting yo = zo,
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Yo —

EXT(yo, yl’y2,y3) — Ys
Y2 — Ys
Y2 — Ys3

EXT(y2, Y3, Y, ¥5) — Ye
Ya = Ys |
Ya — Y5 W

» EXT(ys,ys,¥6,¥7) — ¥s etc.

Ye — Y |

Figure 11. Diagram of Dynamic Model

Y1 = Y2 = Z;, and y3 = z;. Hence, the first extrapolation will be identical to
Aitken’s first extrapolation; however, the equalities stop at this point.

Consider the iterative equation
Tpy1 = 2sin(z,), n=0,1,..., and zo=1. (31)

Table 7 (page 38) shows a comparison of the results obtained when Aitken’s semi-
dynamic method and Irons and Shrive’s fully dynamic method are applied to (31).
The column headings represent the current iterated value (iter) and the current

extrapolated value (ext), if one was applied on that iteration.
Unsuccessful Application

In Chapter II, it was noted that wrong answers can sometimes be obtained
when trying to accelerate a sequence by Aitken’s method. Shanks (1955) found

such a problem. Let {z,} be the sequence of partial sums of the function

2
(1-2)(2-2)
1+4(3/2)z+4(7/4)2® + (15/8)2° +...

f(z) =

I
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TABLE 7

DYNAMIC VS SEMI-DYNAMIC COMPARISON
FOR PROBLEM (31)

Semi-Dynamic Dynamic

n iter ext iter ext

0 1.000000 1.0006000

1 1.682942 1.682942

2 1.987436. 1.915372 1.987436 1.915372
3 1.882438 1.882438 1.892686
4 1.903662 1.895344 1.897278 1.895462
5 1.895590 1.895514 1.895494

\]
=
O
Ot
|:
O
=

If 2 = 4, the series diverges. However, it was shown in Chapter II that Aitken’s
method can obtain the antilimit of a divergent sequence. Table 8 (page 39) shows
the static results when Aitken’s method is applied to this problem. Column i is
the sequence obtained by the i** application of the method. We see that the later
columns converge to 7/27 = 0.25926... However, the value of f(4) is 1/3. Thus,
Aitken’s method did converge, but to the “wrong” value. Shanks showed that
erroneous results in this problem will be obtained only for z = 4. Hence, one may
feel confident that wrong results are few and far between in practical applications,
but do exist. However, Lubkin (1952) did prove that if any two consecutive columns
of the Aitken’s table both converge, then they converge to the same limit. Hence,

if all columns converge, then they all converge to the correct limit.




TABLE 8

CONVERGENCE TO WRONG ANSWER BY
AITKEN’S STATIC METHOD APPLIED
TO SHANKS’ EXAMPLE

n 0 1 2 3 4
0 0
1 1

7 —0.2000
35 —0.6364
155 —-1.5217 0.2241

2667 —6.8526 0.2519 0.2589

2

3

4

5 651 —3.2979 0.2437
6

7 10,795 -—13.9634 0.2557 0.2589
8

43,435 -—28.1854 0.2575 0.2592 0.2593

39




CHAPTER V
SHANKS’ TRANSFORMATIONS FOR SCALARS

In this chapter the general framework for deriving the remaining acceleration
techniques will be established. The motivation will be similar to Shanks’ (1955)
development of his e, transformation for scalar sequences. First, consider a variety
of typical scalar sequences {z,}: convergent, divergent, monotonic and oscillatory.
Plotting the sequence elements versus n and connecting them with a smooth curve

give graphs similar to the samples shown in Figure 12.

Y
-
- a N -~

\ /\/\ / ‘\‘,/’\‘ /‘\‘/.L
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> — D> \/N\,/‘\ e

7

e T Tn g

n —

Figure 12. Plots of Typical Sequences
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Shanks observed that the graphs all look like the graphs of what he called
“physical transients.” By this term he meant a physical quantity, p, as a function
of time in the form:

k

p(t) = s+ a et

i=1
where the b;’s are complex numbers, b; # 0. He referred to them as “transients”
so that he could apply the term in a more general sense for both convergent and
divergent sequences. Since p(t) is an exponential function with b; an element of
the complex numbers, the set of functions also include the trigonometric functions.
Shanks represented the sequences {z,} as if they were “mathematical transients,”
a function of n in the form

k
zn=8+§_:1ai<1?, % #0,1,
where s,a;, and ¢; are constants independent of n and ¢; # ¢; for ¢ # j. There-
fore, his “mathematical transient” equation is identical to the relationship (13) for
scalars. Once again, we have the concept that s is either the limit or the antilimit
of {z,} depending upon the moduli of the ¢'s. As stated earlier, Shanks referred
to a divergent sequence as “diverging from s” (1955, p. 7).
Shanks’ proposed method of approximating s was to solve the 2k + 1 system

of nonlinear equations,
~

k
z,.=B;.,,.+Za..~ g, n<r<n+2k,

=1
for Bk, with a;,q;,t = 1,...,k, the rest of the unknown values. Here B, , is taken
to be an approximation of s. Shanks determined that the solution B, could be

represented in the determinant form
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Tn Tnsl ot Tnitk
Up Untl e Un+k
Unthk-1 Untk v Un42k-1
Bk,n = y (32)
1 1 et 1
Un Un+1 v Untk
Un+k-1 Unik te Unt2k—1
n=20,1,..., and where u,, = z,4; — ©,. Therefore, Shanks derived a new sequence

{Bykn} defined by (32) where k is a nonnegative integer and for which the denom-
inator does not vanish. If the denominator vanishes for n = m and the numerator
does not, then By, is assigned the value oo. If both numerator and denominator

vanished for n = m, then By m = Bk~1.m. He wrote the transforms in operator form

as

ek(xn) = Bk,n

Shanks called e, “the k’th order transform of {4,},” (Shanks, 1955, p. 2)
where {A,} = {z.}. There are two transforms that need to be identified. The first

one is k = 0 where eg(z,) = z,. For the second one, letting £k = 1 we have

Tn Tntl
B _ Un Un+1 _ Ta(Tntz = Tnt1) — Tns1(Tns1 — Tn)
1 = =
" (.’l:,,+2 - 1:,,+1) - (zr\+l - J:,,)
1 1
Un Un41

2
Tnlnt2 — :cn“

n=0,1,... (33)

’
Tny2 — 2:':u+1 + zn
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Comparing (33) with (22) we see that the two right-hand expressions are equivalent.
Therefore, the first extrapolated sequence of Aitken’s A? method and Shanks’ e;
transformation are equivalent for scalars. However, this is not true for a second,
third, or k* application of the methods. In the next chapter, it will be shown how
the sequences of scalars obtained by higher order applications (second, third, etc.)
of Aitken’s method can be obtained from the e, transformations. However, the
er transformation sequences will be derived by a technique different from Shanks’
determinant method. As one can clearly see, the larger the value of k, the more
complicated the solving for By ., since two (k + 1) x (k + 1) determinants must
be computed. Hence, a method of obtaining similar results without the use of
determinants would be a valuable asset. In the next chapter, such a technique is

presented.




CHAPTER VI
WYNN’S EPSILON AND MODIFIED EPSILON METHODS
Theory for Scalar Epsilon Method

Wynn (1956) derived the epsilon (¢) algorithm to accelerate a sequence of
scalars. His simple algorithm effected Shanks’ ex(z,) transformation without the
use of determinants. Wynn showed that he could calculate e;(z,) directly from the
elements of {z,} and e;(z,) directly from the e;_;(z,) elements and values deter-
mined from the e;_»(z,) elements, ¢ = 2,3,... He used the symbol ¢} to represent
his new values, where the k subscript refers to a column number and the n super-
script refers to a diagonal number. His method will be derived for both scalars and
vectors.

For the scalar case, the values ¢} are determined from a given sequence by

setting the initial two column values as

n n
ety =0, egg =24, n=0,1,...,

and by the relationship
n n+1 n+1 n) 1
€k+1 = Ep + (Eh —Ek) y k,n=0,1,... (34)

The quantities ¢; may be arranged as shown in Figure 13 (page 45). Note that the
four quantities of (34) are located at the four corners of a lozenge, as indicated for
n = 0,k = 2 in Figure 13. Therefore, a quick way of remembering how to find the

right side entry of the lozenge is

Right = Left + (Bottom ~ Top)~'.
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€y = Za
el, =0 e?
€5 = Z1 3
531 =0 6{ eg
el ==z, £} s
e, =0 e &}
Eg =23 €§
e, =0 3
63 =24

Figure 13. Wynn’s Epsilon Arrangement

The odd and even numbered columns are quite varied in the information
they give. The odd subscript columns normally diverge and give no directly useful
information as to the limit or antilimit of the sequence. However, one can obviously
see that they are vital as they are used to determine the next even column. The
even subscript columns will often converge to the desired limit or antilimit of {z.}
and will do so more quickly than the original sequence. However, the key sequence
for convergence is the diagonal sequence whose elements are €3,,,m = 0,1,... This
sequence will most often converge not only the quickest, but in some cases, will
converge even when each even numbered column sequence diverges.

In order to find €3, one must first have computed €3, ¢}, and ¢}. This even-
tually leads to the fact that before ¢ can be found, all elements in the first six
“cross-diagonals” must be determined. The term cross-diagonals refers to the di-
agonals of Wynn’s epsilon arrangement, Figure 13, which rise as one moves from
left to right in the figure and where n + k is constant. Wynn (1964) suggested

that to prevent the use of unnecessary storage, computation of the elements can be
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made .by computing one cross-diagonal at a time, using only the data saved from
the previous cross-diagonal.

Therefore, to use his technique as an acceleration method, elements of the
arrangement diagram are computed one cross-diagonal at a time until the 3, ele-
ment has the desired precision of accuracy as measured by ||G(e3,,) — 2./ < Tol,
where G is the iteration function. Wynn’s theorem relating e,(z,) (or €}) to ex(zn)

follows.

THEOREM 6.1: If en(zn) = em(zn) and €ams1(2m) = (em(un))”", where

Up = Tnt1 — Tnj then €,41(2n) = €,21(Tnt1) + (€4(Tnt1) — za,(:z:ﬂ))'1 , s=1,2,...

Wynn’s proof was by mathematical induction (Wynn, 1956, p. 92-94). He

proved the equality by showing that

53-&-1(31\) - el—l(zﬂ+1) and (El(zn+1) - el(zﬂ))—l

are equivalent expressions in determinant form. Hence, in certain cases, the se-
quence €3, m = 0,1,..., converges to the limit or antilimit of {z,} and the con-
vergence is more rapid than the original sequence.

For an example of how Wynn'’s epsilon method works, consider Equation (7).
Table 9 (page 47) shows the epsilon arrangement for five iterations. Hence, Wynn’s
¢ method converges in the same number of iterations as Aitken’s static method. In
addition, this example will be used to illustrate how the scalar sequences obtained
by more than one application of Aitken’s A? method can be computed by the use of
Wynn’s epsilon method. Once column two has been computed; calculate the next
two columns as if the second column were column zero. In other words, when com-
puting column three, treat column one as if every element were zero. Repeat this
process with columns four, five, and six, etc. When all is done, the even numbered

columns will be the same sequences as would be derived by repeated applications




47

TABLE 9
WYNN’S EPSILON ARRANGEMENT FOR EQUATION (7)

n €o €T €3 i €q
0 0.5000000
3.586790
1 0.7788008 0.7044777
—9.867936 —1141.7298
2 0.6774630 0.7035942 0.7034663
28.400377 —8964.4053
3 0.7126738 0.7034830 0.7034674
—80.404595 —73073.1050
4 0.7002567 0.7034693
228.937720
5 0.7046047

of Aitken’s A? method. Table 10 (page 48) shows the results of this procedure for
columns two, three, and four. One may check that the columns labeled ¢} and &7’

are identical to columns two and three of Table 3, which were obtained by applying

Aitken’s method to this same problem.
Theory for Vector Epsilon Method

Now consider {Z,} as a sequence of vectors. Before Wynn'’s algorithm can be
applied to a vector sequence, the inverse of the vector £ = (z;,z3,...,2m)T must
be defined. Wynn (1962) discusses two possible inverses:

(1) Primitive Inverse:

o — — - T .
£l= (zll,zzl,...,zml) , where z; #0 for all <.

For z; = 0, take z;' = 0.

(2) The Samelson Inverse:
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TABLE 10

AITKEN’S A? SEQUENCES DERIVED
FROM WYNN'’S ARRANGEMENT

1 t !

n €0 34 €3

1 0.7044777
—-1131.8619

2 0.7035942 0.7034669
—8992.8058

3 0.7034830 0.7034674

—72992.7007
4 0.7034693

where Z, is the complex conjugate of z, and & is not the zero vector. Define the
zero vector as the inverse of itself. Samelson’s inverse is equivalent to the Moore-
Penrose generalized inverse of £ considered as a m x 1 matrix. Hence, it will always
be referred to as such. The primitive inverse ignores the relationship between the
scalar sequences of different components. In addition, it will frequently have major
problems in that one or more of the reciprocals will be quite large numerically due
to a denominator very close to zero. Further more, as far as is known, the primitive
inverse seldom gives better results than the generalized inverse (Smith, Ford, Sidi;
1987, p. 223). Therefore, the generalized inverse is more useful and, hence, all work

in this study involving inverses of vectors will use generalized inverses.
WYNN’S VECTOR EPSILON ALGORITHM 6.2:

Given the iteration equation Z,+, = G(Z,) and the initial vector £,. Define

£, =0, n=1,2,..., £€3=1=o, and set n=1.

Step 1. €5 = Z,.

~n—k- —n— ~n- —n-k-1) "1
Step 2. Fork=0ton—1,ﬁnde:+f 1=€,,_f+(e,, "—52 k l) .
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Step 3. If n is even and |[&% — £2_,|| < Tol or if n is odd and

|€L_, — &3_;|| < Tol, then go to step 4; otherwise, n =n + 1 and
go to step 1.

Step4. Findy = G(€%)ifnisevenor y = G(¢}_,) if n is odd. If

n-1

lg = €% (or €L_,)|| < Tol, then stop; otherwise, n=n+1 and

go to step 1.

Through the work of Cheng and Hafez (1959), the epsilon method can be
modified to make a semi-dynamic model. Using only the initial vector and the first
two iterates, the first extrapolated term, £, is found by Equation (34). Using
this vector as a new initial vector, two new iterates are generated and another
extrapolated vector determined. This pattern is continued until an iteration has
the desired precision of accuracy as measured by ||G(£}) — €3] < Tol. A diagram
of the model is shown in Figure 14 (page 50). This semi-dynamic model of Wynn'’s
epsilon method is called the Modified Epsilon Method.

MODIFIED VECTOR EPSILON ALGORITHM 6.3:
Given the iteration equation £,-; = G(Z,) and the initial vector Z,. Define
€%, =0, n=0,1,2; €3 =2 and &} = G(Zp).

Step 1. Compute €2 = G(¢}).
Step 2. Compute &7, £}, and €9 by equation (34).
Step 3. Compute £} = G(£9). If ||} — £9]| < Tol, then stop; otherwise,

, €5 =¢€13,and go to step 1.

The modified epsilon method as described in Algorithm 6.3 and shown in

Figure 14 is just one version of several. The method shown is of order one with
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Figure 14. Diagram for Modified Epsilon Method

respect to the initial value € = 5. Order two with respect to £€J uses the vectors &9
through £ to determine €93 and then sets £3 = £ uatil convergence. Higher order
methods continue in a similar fashion; however, orders less than four seem to work
the best, especially for divergent sequence to keep the iteration from diverging too
quickly. As was the case with Aitken’s method, the semi-dynamic model is more
efficient than the original cross-diagonal static model due to the time and storage
required to compute the triangular arrangement for problems of large dimension.
Other variations start with a different element of the original sequence as
the initial value. Here, a desired number of elements, say ¢, of the sequence are
skipped and the process begins with €. This procedure is useful if the multiplicity
of the eigenvalue zero is known, even though exact zero eigenvalues are rare in
practical application. Skipping the number of elements equal to the multiplicity
of the eigenvalue zero will result in faster convergence. Another more practical
purpose for skipping a set number of iterates is when under-relaxation is used to

move various eigenvalues closer to zero.
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Numerical Examples

Consider this original problem of Equation (4) where

1.0 0.1 - T
A= and b =(1.2,-2.0)". (35)

-0.5 04

The solution to this problem is (10.4,—12.0). Using the iterative Equation (5)
and the initial vector (1,1), Wynn’s vector epsilon method determines the solution
with only four iterations. Table 11 {(page 52) shows the Euclidean norm of the
error vectors for the even numbered columns. Remember that the even numbered
columns in Wynn’s arrangement are the only valid sequences. By checking the rate
of convergence of the first column, one can easily see that Wynn’s method took a
very slow converging sequence and accelerated it tremendously. Table 12 (page 52)
shows the results of applying the semi-dynamic (modified) model to problem (35).
Results are shown for orders one, two, and three.

Wynn conjectured and McLeod (1971), Theorem 6.4, and Gekeler (1972),
Theorem 6.5, proved the following theorems which were thoroughly discussed by
Brezinski (1974).

THEOREM 6.4: Let the relation

k k
> i T =8 @, n=0,1,...
=0 =0
hold for the initial values, where the coefficients a; are real, a; # 0, 8 and Z, are m-

dimensional vectors over the complex numbers, and the vectors £ are determined

by (34) and exist for n + r < 2k. Then

k
€3 =& for every n if Y a;#0, and
i=0

€2 =0 for every n otherwise.




TABLE 11

EUCLIDEAN NORMS OF WYNN’S EVEN NUMBERED
COLUMN ERROR VECTORS FOR PROBLEM (35)

n Ep E} Ep

0 16.042443

1 12.791403 7.066314

2 10.710378 5.960512 0.000000

3 9.245948 4.807537

4 8.127063

TABLE 12
EUCLIDEAN NORMS OF ERROR VECTORS FOR
MODIFIED ¢ METHOD FOR
PROBLEM (35)
Euclidean Norms for Order

" 1 2 3
0 16.042443 16.042443 16.042443
1 12.791403 12.791403 12.791403
2 10.710378 10.710378  10.710378
3 6.127186 9.245048 9.245048
4 5.399512 8.127063 8.127063
5 2.481779 0.000000 7.217934
6 2.078020 6.448139
7 1.188792 0.000000
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THEOREM 6.5: If the vector ¢-algorithm is applied to vectors produced by the
linear system (4) where A is a real matrix such that (I — A) is nonsingular, then

En=(I~A4)"b=3 (36)

where k is the degree of the monic minimal polynomial of A with respect to the
vector Zo — &% that is, k is the smallest integer such that there exists the polynomial
k .
p(¥) =D.pi ¥ Pe=1
1=0

where
P(A) (& - &) = 0.
Equation (36) can be generalized to

Ea0k—q) = %

where 0 < ¢ < r for r equal to the multiplicity of the eigenvalue zero of the matrix
A (Brezinski, 1974).

The significance of this fact will primarily be seen in later chapters as we look
at other acceleration techniques. However, the resulis of Problem (35) shown in

Table 11 illustrate this principle. It can be shown that

p(y) =y* — 1.4y + 0.45

is the minimal polynomial of 4 with respect to £y — 3. Hence, k¥ = 2 and, there-
fore, &'§ should be equal to § if rounding errors are not considered. The minimal

polynomial of the matrix A will also be considered more in later chapters.



CHAPTER VII
THE MINIMAL POLYNOMIAL EXTRAPOLATION METHOD
Theoretical Aspect

From this point on the focus of this study will center on vector sequences only.
The first method to consider is a method developed by Cabay and Jackson (1976).
They derived a polynomial extrapolation method for finding the limit (antilimit)
of a vector sequence {Z} governed by the linear iteration (5). They assume that
(I — A)~! does exist so that the limit is the unique sclution of equation (4).

The key item in their method is the minimal polynomial p(y) of A which
annihilates €y = Z; — Zo; in other words, p is that unique monic polynomial of least
degree such that

p(A)io = 0. (37)
Therefore, their technique is referred to as the minimal polynomial extrapolation

(MPE). To derive their algorithm, let §' be the solution of (4) and define

u=8§— Eo a.nd 'lIn = 5,\4.1 - 5,‘. (38)
Hence,
Unse1 = At,, (I — A)¥ =1y, and
+1 ( ) 0 (39)
(I-A)(5-2;) =1,
Let
k=1 [ k _
So(y) = Y ( 3 cj) y', where
1=0 \Jj=i+1
k -
p(y) = ey, e=1, (40)
i=0
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Hence,

(I - A)Sp(4)

(cr+...+eR)+(ca+...+cR)A+...+cd 1 -

.

{ler+ ...+ ck)AA + (c2+ ...+ cu)AA + ... + A4}

= (ca4cs+...+e) —(ci+ca+...+ci)A*

p(I) — p(4).

Assuming p(A) annihilates %o, then

(I — A)Sp(A)io = (p(I) — p(4))do = p(I)To.

Using equations (38) and (39) and simplifying give

T=5-% = (I - A) Vi = p(1)"1S,(A)io. (41)

However, it is also true that

ﬁi = 1-:"-+1 - 5,' = A:l_:., - A:l-:.,'._l = ... = A"d‘o.

(42)

Hence, (41) becomes

Therefore, solving for 3§ gives

-

§=1Zo+

(43)

ki:l ( Ek: ci) if] /p(1)

1=0 \J=i+1

Since (I — A)~! exists, A has no eigenvalue at unity and thus p(1) # 0. There-

fore @ can be found after k + 1 iterations, provided the annihilating pol

nial ex-

ists. Cabay and Jackson made no attempt to produce the minimal polynou.al p(y).

Instead, they found an almost-annihilating polynomial a(y) = %, a; 3%, a(1) # 0
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and ap = 1, such that Zf;o a; @; = 6 for § relatively small. Once the a;’s are found,
the extrapolated vector is determined by calculating @ and adding the result to Zo.
One method for solving the a;’s is to minimize the norm by using a least squares
technique. Hence, we solve
K'—1
> a4 =~
1=0
Another approach (Sidi, 1986, and Sidi, Ford, and Smith, 1986) in developing
the MPE method is to begin with the minimal polyncmial, p(y), of A with respect
to %o, Equation (40). Using (37) and (42),
. k . k
0= p(A)‘ZIo = ch A.J ’lIo = ch ‘le.
i=0 )=0
So the unknown coefficients of the polynomial p are ¢, = 1 and the components of

the vector ¢ = (¢cg, €1, -, ck—1)¥ which solves the system of equations
Ué = —iy, (44)
where U is the m x k& matrix defined by
U = [@o, U1y -y Uk=1]-

If £ < m, then there are more equations in the system than unknowns; however, we
have shown consistency. Therefore, the unique solution can be found.

We now express any element &; in terms of ¥, by using the fact that if §'is

the solution of (4) then 5= (I — A)'lg. So

Z, = AT+ (T +A4+.. . +471)
= AlTo+ ([ — AT — A)7 b= Ago+ (I — A7)§

= A(Fo-5)+7

Hence, 47(Zy — §) = Z; — §.




37

Smith, Ford, and Sidi (1987) showed that the minimal polynomial of A with
respect to the vector Z; — § is the same polynomial as that for i, for every j, and
thus true for j = 0. (Hence, p(y) is the same minimal polynomial that was discussed
in Chapter VI when it was shown that &9, = § for k the degree of p(y).) So

k k k
0 = Sl =) ;A (Fo-5)=3 ¢ (5-3)
o]

j=0 =0

k k )
= ZCjE—E.(ZCj). (46)

7=0
Since unity is assumed not to be an eigenvalue of 4, Z?:o ¢; = p(1) # 0. Hence, §
is computed directly from (46).

The above proof can also be shown for the starting vector Z, instead of Z,.

Therefore, a theorem for any k + 1 consecutive terms of a sequence was proven by

Smith, Ford, and Sidi (1987).

THEOREM 7.1: For any k+1 consecutive terms of the sequence {Z}, say Zn, Tns1,---
Znik, we have
k k
PILESE A DR (47)
j=0 7=0

where ¢;,7 = 0,...,k, are defined by equation (40).

If (43) is rewritten in terms of the £;’s, we have

k k
§= Z lj 5_,‘, where lj = CJ‘/ (Z C,') .
j=0 1=0

If r is the multiplicity of the eigenvalue zero, then r terms on each side of (47)
are zero. Therefore, if » is known or suspected to be positive, there is an advantage
of starting the k£ + 1 consecutive terms at Z,,n > 0, instead of £,. Preferably, we
should start at Z,.

To this point, the discussion has dealt with finding the solution of a linear sys-

tem. For linear problems of large dimension, the degree of the minimal polynomial
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may be difficult to determine. For nonlinear problems, the annihilating polynomial
changes for each iteration and the limit cannot be obtained in a finite number of
iterations. Therefore, a small value of k is chosen and Equation (43) is used as
a model for approximating the solution. Repeating the process until convergence
with each new initial vector set equal to the last computed extrapolated vector, a
semi-dynamic method is developed for solving large linear problems and nonlinear
problems. Even for small linear problems where the exact k£ is known, rounding
errors may prevent obtaining the solution to the desired accuracy on the first ex-

trapolation. Hence, the semi-dynamic model is used for all types of problems.
MINIMAL POLYNOMIAL EXTRAPOLATION (MPE) ALGORITHM 7.2:

Given the sequence .11 = G(&,), the initial value £y, and the positive integer k.

Step 1. Generate £1,Z3,...,Zk+1 by the function G.

Step 2. Compute U and uj by use of (45) and (38).

Step 3. Compute ¢ from (44) and set ¢, = 1.

Step 4. Compute 3 from (47) where £, = ;.

Step 5. Generate ¥ = G(3). If || — §'|| < Tol, then stop; otherwise, set

Zo = § and go to step 1.
Theoretical Application to Numerical Problems

Let us consider Problem (35) again. In Chapter VI, it was shown that Wynn'’s
vector epsilon method obtains the solution in four (2«) iterations since the degree
of the monic minimal polynomial is k = 2. Since this example is a linear problem,
according to theory, the MPE method should compute the solution in k +1 = 3
iterations. This is the case as the solution, (10.4,—-12.0), is found to six decimal
place accuracy after only three iterations and one extrapolation. Therefore, in

theory, whereas Wynn’s Vector Epsilon method requires 2k iterations to obtain 3,
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the MPE method‘can obtain it in only &k + 1 iterations. If & is large, one can see a
major advantage of the MPE method. However, the larger the value of k, the larger
the dimension of our matrix U in determining the coefficient vector, ¢. If the MPE
method is applied to (35) with k£ = 1, the extrapolation procedure still converges;
however, it takes 78 iterations to determine the solution to six decimal places.
For larger dimensional problems, k usually should be chosen such that

2 < k £ 5. There are two reasons for this restriction of k. The first reason is the
storage space and the time required in working with large dimensional matrices. The
second reason is given by Anderson (1965, p. 555), “the power of an iterative method
increases slowly with degree for M > 3 since the “early,” poor approximations are
not samples of significant information content ...” (Here Anderson’s M refers to k).
Results found from the numerical test problems in Chapter XI show that no one &

is the best choice for all problems.
Variations for Convergent/Divergent Sequences

Since Equation (47) uses only the first k iterates of the generated sequence,
the most accurate approximation of the limit for a convergent sequence, 3.1, is not
used. What would be helpful is to modify the algorithm so that the most current
estimates are used. Chandler (1988) suggests the following model for the linear
equation (4).

Let the finite sequence § = {Zo,Z1,...,Zks1} be the k + 2 generated vectors
that are used to determine the coefficient vector ¢ of (44). As shown in Chapter II,

Equation (13), there exist constants e; and ¢;,: = 1,...,m, where m is the order of

A, such that

—

xn=.§'+2a,~t7,-q;‘, n=0,1,...,k + 1.
i=1

Define b; = a;g*** and p; = 1/¢;, i =1,...,m. Then
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Z=5+ Y bGP, n=0,1, .,k 41

=1

gl g |

Then there exist a sequence T = {Z,Z1,...,& {4} sach that

m

ZL=58+Y bivip}, r=0,...,k+1,

i=0
where Z! = Zp41--. If |¢;| < 1 for all 7, then |p;] > 1. Hence, 5 is the limit of S
and the antilimit of T'. If the moduli of all ¢;’s are greater than unity, then |p;| < 1
for all i. Therefore, §'is the antilimit of S and the limit of T. Otherwise, 5’ is the
antilimit of both S and T'.

"If the generated sequence S diverges, then the most accurate estimate of the
antilimit is £o. Therefore, the MPE method should be applied to the sequence S
in that case to approximate the antilimit so that (47) will be the sum of the most
accurate estimate plus a small error. If S converges, then the most accurate estimate
of the limit is Zx4;; hence, sequence T should be used in this case to approximate
the limit. Even though the above theory was developed for the linear case, it can be
used as a model for estimating the solution of a nonlinear problem. A comparison

of the two techniques will be shown in Chapter XI.




CHAPTER VIII
THE REDUCED RANK EXTRAPOLATION METHOD
Theory for the Full Rank Extrapolation Method

Henrici (1964) set forth to extend Aitken’s formula for systems of equations.
His goal was to estimate the limit of a sequence of m-dimensional vectors. His
formula contains two m x m matrices, of which one involves an inverse. For large
problems, solving a large linear system is not exactly helpful. However, the theo-
retical application of his work is valid. Mesina (1977) and Eddy (1979) modified
Henrici’s basic formula by reducing the dimension of the linear system to a value
that is reasonable for computation. Eddy referred to his method as the Reduced
Rank Extrapolation (RRE) method.

Before their methods and formulas are derived, some basic definitions are
needed which will be used throughout this chapter. Some of the definitions have
already been used in previous chapters; however, they are mentioned again for
completeness.

Let {Z.} be an m-dimensional vector sequence generated by the Equation (3)
such that §'is a solution of (2). Define the first and second difference vectors as
Up = Tny1 — Tn a0d Ty = Unyy — Un, respectively. The following m x k (1 < k < m)
rectangular matrices are very valuable in the development of the theory. Their

columns are first or second difference vectors. Define

Un = [UnyUnt1y.-yUnsk—1] and

Vn = [Un,an+1,---,€n+k-—1]-
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Also, define A = A(S) to be the Jacobian matrix of the function G taken at the

solution 8. The Jacobian matrix is defined as
91(5 )
_ 8g,-(:5’)

a{j =
Ba: ;
J

y 1,7=1,...,m, where G(Z)= : ,

| 9m(Z) |
a;j is the (4, ) component of the matrix 4, and Z = (z;,23,...,Zm)7. Henrici (1964,
p. 104) showed that e,y1 = A(3)e€, + O(||€,]|)? where €, = £, — 5 and O(||€,]|?)
denotes a quantity bounded by C||€,||?, C an integer. If we assume that this error

formula is exact with O(|&,||) = 0 for finite values of n, then Zn4; — 5= A(Z, - 3).

Then the following relationships are satisfied:

Gp = Aflp_y =+ = A Gy, Tp = (A — )i,
Vi = Upp1 —Un=(A=I)U,, and (48)
Un+1 = AU,. (49)

If K = m, then U, and V, are square matrices. Assuming that U, is nonsin-
gular, Equation (49) gives
A=U UL (50)

Since A is the Jacobian matrix of G, then
Tp41 — § = AZ, — AS.
This implies that
(A—I)§=AZpn ~ Tny1 + Tn — Tn = (A - )T, — U,.
Therefore, if unity is not an eigenvalue of (4 — I), then (4 — I)~! exists and

§=Z,—(A-I)"4d,. (51)
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Using (50), we change (4 — I)~! in the following fashion:

(A=-D? = (UpnU'-D1= [(Un+1 - Un)Un—l]—1

Substituting into (51), the extrapolation formula is
§=Zn — UV U (52)

Though the development of (52) is due to Henrici (1964), some of the notation used
is due to Smith, Ford, and Sidi (1987). As was the case with the MPE method,
Equation (52) should be applied to the sequence S = {Z,,Zns1,:- .y Tnyks1} if the
sequence S diverges. If S is a convergent sequence, then the sequence

T = {ZTntk+1,Tntky---,Zn} is used instead of S.

Eddy (1979) derived the same extrapolation formula as follows:

§ = '!J'_.rx.}oi',,=lim(fo+(51—5:'0)+(2':'2—51)+...)
= Hm(fo+11‘o+‘l-l..1+...)
= Zo+Um(I+A+ A% +..)id,

= Zo+ (I — A) . (53)
Equation (48) then yields

§ = 50—U0%—1‘l-l.‘o, or

§ = T+ UoZ and 0=1uo+ W2,

which matches Equation (52) for n = 0. Therefore, for a linear system and with no
rounding errors, §'is computed exactly. For a nonlinear problem, the limit cannot be
obtained for a finite value of k, but Equation (52) is vsed as a model for estimating 3,
the solution of the problem. Since the extrapolated vector will be only an estimate

of §, a repeating process with a new initial vector set equal to the extrapolated
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vector is used to establish a semi-dynamic procedure. This method will be referred
to as the Full Rank Extrapolation (FRE) method.

The FRE method is an acceleration technique that requires m + 1 iterations,
where m is the dimension of the vector space of the problem. There is one obvious
problem with this method: if m is large, then to obtain m + 1 iterations before
we can even apply the extrapolation technique defeats the purpose of accelerating.
Though Henrici (1964) indicated that the technique is still valid for values much
smaller than m, Eddy (1979) proved this fact.

Theory for the Reduced Rank Extrapolation Method

Assume that we choose k such that 1 <k < m. Then U and V are now non-
square matrices and have no inverses, so Equation (50) does not hold. Therefore,
an alternate approach for establishing the basic extrapolation formula is needed.

Let the exact limit, s, in (53) be replaced by the extrapolated value 5. Define
(I-A)G =UsZ. (54)
Using (48) and (54), we have
o =(I - A)UoZ = -Vo2Z
so that the extrapolated vector can be expressed by
§' =20+ UoZ and 0=1o+ VoZ. (55)
Solving Equation (55) by the method of least squares gives
0 = (Vy)do + (Vi) V) Z.

Therefore,

Z = —((V)Vo) ™ (Vg Yo = Vi o, (56)
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where V' is the generalized inverse of V.
Substituting (56) into (55) and generalizing give an extrapolation method for

k < m and any starting vector Z,:

As with the MPE and FRE methods, the sequence used in (57) may be the generated
sequence, S, or S in reverse order, depending upon whether the iterated sequence
diverges or converges, respectively. Eddy (1979) callzd this method the Reduced
Rank Extrapolation (RRE) method. Once again, it is usually best to keep k less
than about six for large dimensional problems. From this point on, this procedure

will be referred to as the RRE method, regardless of the value of k.
REDUCED RANK EXTRAPOLATION ALGORITHM 8.1:

Given the iteration equation Z;;; = G(Z;), the initial vector Z,, and the positive

integer k.

Step 1. For ¢ =0,1,...,k, compute ;;; = G(&;).

Step 2. For:=0,1,...,k — 1, compute @; = £;;, — Z; and 7; = T4, — Ui.

Step 3. Define U and V by U = [iy, @1, ..., 8k-1] and V = [Ty, 1, ..., Tk-1]-

Step 4. Compute 5= zy — UHu,, where H = V-1, if k = m, the dimension
of the problem; or H = V* = ((V*)V)"1V*, the generalized inverse
of V,if k <m.

Step 5. If ||G(3") — 3]| < Tol, then stop; otherwise, set Tp = § and &; = G(3),
generate the vectors Z3,...,Zk41 by the iteration equation, and go

to step 2.

The computation of Step 4 of Algorithm 8.1 involves the generalized inverse

of V. Eddy (1979) and Smith, Ford, and Sidi (1987) suggest that this matrix be
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computed in the algorithm. Therefore, the matrix ((V*)V)™! niust be determined,
which requires costly computer time, especially for larger va.lt;es of k. I suggest an

alternate approach. Let B = (V*)V and § = (V*)io. Then UHj in Step 4 can be

rewritten as
UHiuy = U((V')V)'l(V')ﬁo = UB"137= Uz,

where Bz = y. The vector 7 is found by Gaussian elimination. Since the product
(V*)V will be a symmetric matrix, the amount of computer time is reduced even

more.
Numerical Examples

For an example, consider the two-dimensional problem (Henrici, 1964) of find-

ing the solution of the system

T = z2+y2’
(58)
2_y2’

y = 2
near the point (0.8,0.4). A quick check will show that the solution of (58) is
(0.771845,0.419643) to six decimal places. However converting (58) into its it-

eration equations,

Tnyl = (zn)z + (yn)z and Yny1 = (zﬂ)z + (yﬂ)zv

the iterative sequence {z,}, where 2, = (zn,yn), diverges.

Table 13 (page 67) shows infinity norm results of applying the RRE method,
k = 2, to this problem. The first column gives the norms of each difference vector,
%,. The norms given in the second column are for the error vectors, é,, of each
extrapolated vector. Since k = 2, there must be k + 1 = 3 iterations before the

extrapolation technique can be applied. Hence, extrapolated results, column two,

are obtained only once every three iterations.
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TABLE 13

INFINITY NORMS OF DIFFERENCE AND
ERROR VECTORS FOR THE RRE
METHOD FOR PROBLEM (58)

g -

n Up €n

0 0.080000

1 0.070400

2 0.180224 0.002280
3 0.003916

4 0.004952

5 0.009096 0.000023
6 0.000023

7 0 000047

8 0.000079 0.000000
9 0.000000

Table 13 shows that the solution, to six place accuracy, is obtained upon
extrapolating after the ninth iteration. However, a tenth iteration is needed to
ensure that the ninth difference vector has the desired precision of accuracy for
convergence. In addition, column two measures the error vector, which normally
cannot be measured since the answer is not known.

Figure 15 (page 68) shows a graph of how the RRE method (k = 2) compares
with the MPE method (k = 2), the modified vector epsilon method (order 2), and
Aitken’s semi-dynamic method (Jennings’ SDM) on Problem (58). The graph plots
the logarithm (base 10) of the infinity norm of the difference vector

(@n-1 = Tp — Zn-1) as a function of the number of iterations. The results show that
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the RRE and MPE methods clearly converge faster then the ¢ method and Aitken’s
method. In fact, the graph suggests that the RRE and the MPE are equivalent
methods since the results obtained from these two methods are identical. However,
this is NOT so. In Chapter X, it will be shown that the two methods are very
similar (in fact, their results are identical for some problems, as is the case for this
example), but they are not equivalent methods. Probably, the most important fact
shown in Figure 15 is that the MPE and RRE methods both produced an accurate
fixed point solution from a divergent nonlinear iteration and obtained the results

very rapidly.

ITSRATION

Figure 15. Graph Comparisons for Problem (58)




CHAPTER IX
ANDERSON’S GENERALIZED SECANT ALGORITHMS
Theoretical Development for Secant Methods

Anderson (1965) was motivated by the inability of Aitken’s and Wynn's meth-
ods to “feed back” into the process in a fully dynamic manner iterates already ob-
tained. He expressed his feelings by stating “The Aitken A? process, of which the
e-algorithm is a generalization, is considerably less effective if applied statically ...
than if applied dynamically ...” (Anderson, 1965, p. 552). His referral to a dynamic
process is what has been called a semi-dynamic method in this study. He desired to
find a fully dynamic procedure which would accelerate the convergence of a vector
sequence. This process is similar to the fully dynamic scalar Aitken algorithm of
Irons and Shrive (1987) discussed in Chapter IV. Anderson developed one algorithm
and then derived variations from it. He obtained the first algorithm by generalizing
the univariate secant method geometrically; see Figure 16 (page 70). Given the

equation z = g(z) and the scalars z4 and z,, the univariate secant method is

Tntl = Ty +B(3n_1 - t"), n = 1,2,. “ey

where

_ 9(zn) = 2n
B= [g(xn) - g(zn—l)] - [zn - zn—l] ]

Generalizing the method for m-dimensions, Wolfe (1959) saw the next element of
the sequence as being the solution of a system of nonlinear equations of m secant

hyperplanes through m + 1 points. However, Anderson considered only a hyperline
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Y = 6(x)
(‘1'x1)

(xg1Glx))

84 (xl,xl)

(xy46(x,))

4
X-AXIS

Figure 16. Graph of One Extrapolation of Secant Method

through two points. It must be noted that, in general, a hyperline does not intersect
the subspace defining the solution; however, the point chosen is the point that is in
some sense “closest” to this subspace.

Now for the development of Anderson’s first algorithm. Given the vector
sequence {Z,} and the basic iteration equation 41 = G(Z,), Anderson sought two
other sequences which converge to the same limit as {Z,}, but more rapidly. He

first defined a coupled pair of iterative sequences {§,} and {z,} by

Zn = G(Yn).
Also define the residual vector, 7., and the inner product, (#,?), of the two real
m-dimensional vectors # and ¥ by

-

m
Tn = Zn —Yn and (%,7) = Zu‘- v; w;,
1=1
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respectively, where the weights w; are positive real numbers and the scalars u; and
v; are the components of % and ¥. Define @/ and v’/ for the generalized univariate

case

) - — —
n Un + Qn(Yn-1 — Un and
( 1 )a (59)

6:; = Zn + Qn(zn—l - 2;1)

Also define the “linearized residual” R, by

R, =057 —@', 7 —a").

i =

If R =(Z,Z), then from calculus g—g =2 (;93, z). Hence, minimizing R, with respect

to the parameter @, yields

OR, (36’ woooul )
0

Q- Q. 0Q,""

= (Fpol = Tny¥ o, —%,) =
Solving for @,, we have
0 = (Fa=1— Tny7n + Qn[Fa-1 — 7))
= (Fac1 = PnyTn) + @n(Frci — Ty Tnoy — 7).
Hence,
Qn = (Fa — Fa=1,7)/(Fn = Ta=1)Tn = Fno1). (60)

Define the extrapolated vector by
Ynt1 =U. + Ba(v], - %)), By >0. (61)

According to Anderson the choice of a positive B, prevents y,4+; from becoming
trapped in the subspace spanned by the previous g, iterates. Usually B, = 1 is most
appropriate; however, one must determine the optiraum value for B, empirically.
Anderson refers to this algorithm as the “extrapolation algorithm.”

Before applying Anderson’s extrapolation method, the first two terms of both

{7n} and {Z.} are required. Therefore, {§,} and {7,} usually are initiated by
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setting Jo = To and compuiing zp = G(%o) = Z1. Alsc set 3, = Zp and compute z;
by z) = G(#1) = G(Z1) = Z;. The extrapolation technique is now applied.
For the special case where m = 1, Q, = 7, /(¥ — *n—1). Therefore, for B, = 0,
the next iterate 1s
Zn — Un

T = U + — — — —
Yn+1 = Yn (Zn _ yu) - (z,‘_l — Yn—

1)(§n-1 - gn)~

Substituting z, = G(¥,) and rearranging give

— — G(g’n) —g‘ﬂ - —
ntl = Yn + = = = = \Un — Yn-
Yot o= = G + G D,

which is the univariate secant method. Hence, Andercon’s method is consistent for

m = 1.
ANDERSON’S EXTRAPOLATION ALGORITHM 9.1

Given the iteration equation Z,,; = G(Z,), the initial vector Zj, and the sequence

{Bo, Bs,...}.

—

o — Yo, and set n = 1.

pt}
i

Step 1. Define 4o = Zp, 20 = %) = Z1,

Zpn = Yn.

Step 2. Compute z, = G(,) and 75
Step 3. Find Qn, %, and ¥/, by (60) and (59).

Step 4. Compute Ypt1 = U, + Ba(v, — ).

Step 5. If ||gn+1 — Un|| < Tol, stop; otherwise, in:rease n by one and

go to step 2.

Anderson developed an alternate algorithm he referred to as the “relaxation
algorithm.” The name was so given because the method defines a relaxation param-

eter dynamically. Define

U, = Zn+ Q@nTn,

-1 —- -
v, = zn—-1+Qnrn—1a and




Minimizing R, with respect to @, yields

OR. . L S

50, = (Fac1 — Tny ¥, — @,)=0.
Hence,
0 = (-1 — Fny(Zn-1 — Zn) + Qn [Fa-1 — 7))
= (Faci — TnyZne1 ~ Zn + Qu(Frc1 — Ty Fae1 — Tn).
So

Qn = _(Fn - Fn—l) Zn - Zn-l)/("?n - 'Fn--laFn - 'F‘n—l)- (62)

Thus define yn4; = @},. It should be noted here that Anderson has a typographical

error in his article. His equation does not have the negative sign.
ANDERSON’S RELAXATION ALGORITHM 9.2.

Given the iteration equation £ny1 = G(Z,), the initial vector Zy, and the sequence

{By,By,...}.

Step 3. Determine Q, by (62).
Step 4. Set Ynt1 = UL = Zp + QnTn.
Step 5. If |§n+1 — Fal| < Tol, stop; otherwise, increase n by one and

go to step 2.

Anderson discussed two particular variants of the first algorithm. The first is
the choice of the metric of the inner product for which R, is defined. The second
variant is for higher degree methods. The higher degree methods are obtained by

minimizing a linearized residual, R,, over subspaces cf higher dimensions.




Define, for a positive integer k,

k
in + Z Qi(gn—j - fn),

w, =
=1
L

o= E,‘+ZQf,(Z,,_,-—Zn), and (63)
i=1

R, = 05(F.—a.,5.—al).

Minimizing R, with respect to Q, yields, for : = 1,2,...,k,

ke
S (P = Pty T = T ) Q2 = (Fn = Tnmiy o) (64)

i=1
Define 3,41 as in Equation (61).

This algorithm is dynamic, coupled, and can be applied after finding £ + 1
iterations. In addition, Anderson’s method can “build up” the degree by being
applied for £ = 1,2, etc., until the desired value of k is reached. Hence, for any
positive integer k, Anderson’s higher degree algorithm is a fully dynamic technique

which can be applied after only two iterations. As previously mentioned, Anderson

states that low-degree cases, limiting k to less than six, usually work best.
ANDERSON’S HIGHER-DEGREE ALGORITHM 9.3.

Given the iteration equation Z£,4+1 = G(Z,), the initial vector £, the positive integer

k, and the sequence {B,, By,...}.

S.tep 1. For n =0 to k, define §, = Z,, 2, = G(¥n), and
Fn = Zn — Yn.

Step 2. Solve the system (64) for Q7.

Step 3. Determine @/, and v/, by (63).

Step 4. Compute §ny1 = Ul + Ba(v'], — ¥ },).

Step 5. If ||gn+1 — Unl| < Tol, stop; otherwise, compute

Zn+1 = G(Un+1)yTn+1 = Znt1 — Yns1,m = n + 1, and go to step 2.
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Numerical Examples

Consider the linear system (4) where A is the tridiagonal matrix whose
superdiagonal is (1,0,1/3,0,0,0),

diagonal is (1/2,1/2,1,—~1,-1/6,1/3,1/3,1/3),

subdiagonal is (0,0,—1,0,3,0),and

b is the constant vector (-1/2,1/2,-1/3,13/6,2/3,-17/3,2/3).

Figure 17 compares the convergence of Anderson’s method for 2 < k < 5 and the

(65)

relaxation method with the basic iteration. Convergence, the infinity norm of the
difference vector less than 107!%, with no acceleration is obtained in 57 iterations.
The best results are obtained for Anderson’s method with ¥ = 4 and 5. This is
not by coincidence since this problem was designed to have a matrix of order seven

with a monic minimal polynomial of degree 4:

- logyq |||“n-1||
o

° ® 1 ITERATION '° 20 2

Figure 17. Graph Comparison of Anderson’s
Methods for Problem (65)
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logyq || “n-1”

-104

-

Anderson
k=2
-15 : 10 15
° ITERATION

Figure 18. Comparison of Results for Anderson’s Methods,
the MPE Method, and the RRE Method for
Problem (28)

p(y) = (v - 1/2)*(y - 1/3)},

Hence, the best results are obtained when k is chosen as the degree of the minimal
polynomial of A, as was the case for the MPE and RRE methods for linear problems.
Another point is that if k is greater than the degree of the minimal polynomial, the
sequence will still converge; however, the convergence rate will not improve. Once
again, we see that an acceleration method has determined a fixed point solution
much faster than the basic iteration.

Recall the familiar examples, Problems (28) and (58). In Figures 18 and 19
(Figure 19 on page 77), the results of these two problems for Anderson’s three
methods: k£ = 1,2, and the relaxation method, are compared with the results ob-

tained by the RRE and MPE methods, k = 2. Clearly, Anderson’s method with
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Anderson
Relax

ITERATION
Figure 19. Comparison of Results for Anderson’s Methods,

the MPE Method, and the RRE Method for
Problem (58)

k = 2 gives the best results for these examples. This leads to a few questions. Are
these results consistent with results of other problems? Are there ways of comparing
two or more of these techniques from the theoretical view point? The latter question
leads into the next chapter where the first extrapolation method of Anderson, the
MPE method, and the RRE method are compared in theory. The former question
is saved for Chapter XI.

A final comment concerning Anderson’s method needs to be made. Even
though he wrote his article in 1965, it has been widely ignored. There were no
references found to Anderson’s article or to Anderson’s method in the research for
this thesis. The majority of the articles or papers written on the subject area concern
the theoretical and/or numerical comparison of the vector Aitken, the vector ¢, the

RRE, and/or the MPE methods. One may speculate that the title of his article,

]
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‘Tterative Procedures for Nonlinear Integral Equations,” may have something to do
with the problem since it makes no reference to the subject of acceleration methods.
For whatever the reason, tke article and the acceleration method have received little

attention.




CHAPTER X
THEORETICAL COMPARISONS
Determinant Form for the MPE Method

Now that all the acceleration techniques have been given, they can be com-
pared theoretically. Since the MPE, the RRE, and Anderson’s methods all rely on
solving a system of linear equations, it seems logical to start with them. The theory
presented in this chapter for the MPE and the RRE methods was derived by Sidi
(1986) and Sidi, Ford, and Smith (1986). The theory for Anderson’s method and
the examples, to the best of our knowledge, have not been published.

Define the inner product of two sequence terms &; and a@; to be a;; = (&, @;),

i,j > 0. Also define the matrix [to,...,%] by

to 4 .o t

a,o'o a'o,l cee ao'k

ai,0 a1 te ai .k (66)
| Qk-1,0 Qp—1,1 T k-1 |

Denote the determinant of the matrix (66) by D [to,...,%], and denote by N; the

cofactor of ¢; in D [to,...,%], ¢ = 0,...,k. If the elements of the first row of

D [t-;, e ,t-;] are vectors, then the determinant is to be interpreted as
End - k —
D[fo,..., 0] = Y& M. (67)
1=0

79




80

It was shown in Chapter VII that given the m-dimensional vector sequence
{Za}, its limit &, and some positive number k£ < m; 5 can be estimated by use of
the MPE method by

k k
3= El,- £;, where l;=c¢;/ ch , (68)
1=0 j=0
provided E?ﬂ ¢; # 0. The vector &= (co,c1,. .- ,ck—1)T solves the system of equa-
tions UE = —iis, where U and @ are found by (45) and (38) and cx = 1. The vector
& that satisfies this system satisfies the normal equations
k—1
> (@, #5)¢ = —(@i, k), 0Si<k—-1,
j=0

Consequently, the vector [= (loy- - ., 1x) of Equation (68) satisfies the equations

Yk oli=1, and (69)
Sieo(@r @)l =0, 0<i< k-1,
provided these equations have a solution. The matrix of Equations (69) is (66)
where t; = 1 and a;; = (@, 4;). Assuming that its determinant is nonzero, then
Cramer’s rule can be used to write the solution of (69) as

Lo _ N;
? :‘=0Ng D[l,--.,l],

0<5< k.

From (67) and (68) we find

. ] - k Nj .
¥ o= LhEh = B

=0 =0
TieoZi Nj _ D[Zo,..., 5]
DQ,...,11  D[,...,1]°

(70)
Determinant Form for the RRE Method

Now consider the RRE method. From Equation (57) and letting n = 0, the

first extrapolated vector found by the RRE method is

-

8 "= 2-‘..0 - Uo%+22‘o, (71)
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where VT is the generalized inverse of V. (If k = m, then V* is the inverse of V.)

Define ¢ = (g0, 41,- --,qk-1)T to be the vector which satisfies the system of equations

V= —,. (72)
Then (71) can be rewritten as
k-1
;'=50+qu~= fo-{-zq.; u;. (73)
=0

As was the case for the MPE method, the ¢ that satisfies (72) will also satisfy the
normal equations
k-1
2 (%, 9)qs = ~ (¥, %), 0<i<k-1. (74)
J=0

Substituting v; = 4,4, — #; for the second component on the left-hand side of (74)

and rearranging the equation, we have

k-1
0 = (T, %)+ (T 6 — T5)g5
=0
k-1
= (U;,%0) + (i, T1 — Go)go + I_ (T, Gjp1 — ;) y
=1
, k=1
= (%, %) + (i, %1)q0 — (T:,%o)go + D (¥ Tjs1)g5 — (Tr T;5) ;]
=1

= (%, %o)(1 — go) + (¥, %1)(g0 — @1) + (¥, T2)(q1 — ¢2)

+ oo+ (T Ur-1)(gh-2 = Gh-1) + (i) Ta)qr—1
k-1
= (T, %0)(1 — go) + (T, Ta)qer + D_ (5, %j)(gj-1 — ¢;), 0<i<k—1.
=1

Define

lo=1-go,lk = gk-1, and
(75)
li=¢qj-1-¢;, 1<j<k-1.

It is easy to see that
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Therefore, Equations (75) and (76) establish a one-to-one correspondence between
the ¢;’s and I;’s. Hence, the system of linear equations (74) for the g¢;’s is equivalent

to the linear system

k=1, and
= (77)
Sk o(@ @)l =0, 0<i<k-1,

for the [;’s. Substituting @; = Z;41 — £; on the right-hand side of (73), rearranging,
and applying the one-to-one correspondence (75), (73) can be written in the form
of (68). The matrix of the system (77), once again, is (66); where a;; = (¥, u;).
Assuming that the determinant of the matrix is nonzero, Cramer’s rule can be used
to solve the system. The result will be (70). It is important to notice that even
though the extrapolated results for both the MPE and RRE methods have the same
determinant form, the results are not necessarily the same. This is because the a; ;

elements of the matrices are different. For the MPE, they are (u;,%;); whereas, for

the RRE, they are (%, ;).
Determinant Form for Anderson’s Methods

Lastly we consider Anderson’s higher degree method. Assume that the first
extrapolation is not performed until k + 1 iterations have been obtained. Hence,
the first k + 1 iterations will generate the same sequence, Zo,...,Zx+1, as the MPE
and RRE methods do. Also assume that B, = 1 for all n. Therefore, using (61)
and (63) the extrapolation formula becomes

k
Gorr = 7 = Ea + 30 Q(Fucy — 5. (18)

=1
As was shown in Chapter IX, to start Anderson’s method one sets 3o = o, 20 =
G(%) = Z1,%1 = Zo, etc., until the necessary number of sequence elements are

—

obtained for extrapolation. Therefore, the two sequerces yo,...,¥, and Zo,...,Zn
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are the same sequences, as are the two sequences %,...,2, and Z1,...,Zn41. Lhis
information will be very valuable later.
The QJ’s are found by solving the linear system of equations {64). Since

Tn = Zn — Yn = Tn+1 — Tn = Un, then (64) is equivalent to

S (n = Tmmiylin = Gnej)gj = (fn — Gnoisiln)y 1<i<k, or
i=1
k
S (fin = Bncictylin — Bnj)gj = (B = Bnoic1,in), 0<i<k—1, or
=1
k-1
Z(ﬁu - in—i—l,'ﬁ"n - ﬁn—j—l)qj-{-l = ('l—l:n - iﬂ—i—l}iﬂ)) 0 .<_ ? S k — 1,

j=0

where ¢; = @n. The system can be rearranged as follcws:

0 = _('izn - in—i—l,'a:n - ﬁn—l)‘ll + (in - ﬁ‘n——i—.‘_’ ﬁ:n) -
k-1
Y (fn = Bnoic1y8n — Tnmju1)gi41
i=1
= "'(ﬁ.n - En-i-l,'&:n)QI + ('a'n - ﬁ:n—s'-lya‘n) + ('a‘n - ﬁ‘n-i—l, d.n-l )91 -
k—1 ke—1
Z(ﬁn - ﬁn—i—lyin)qj-f-l + Z(ﬂ"ﬂ - ﬁﬂ-i—l’ﬁ’.ﬂ"j—l)qj'*'l
=1 i=1
k
= (G = Unoiot,@n)(l =1 =gz =+ = @) + 3_(Tin ~ Gnoi-1, ln-;)q;-
j=1
Set

It is easy to verify that E;?:l I; = 1. Once again, we have established a one-to-one
correspondence between the ¢;’s, 0 < i < k, and the I;’s, 0 < j < k. Hence, the

linear system of equations (64) for the ¢;’s is equivalent to the linear system

foli=1,

=0
b o(fin = Unoio1, Bnoj)lj =0, 0<i<k-1,
for the /;’s. As with the other two methods, the matrix for this system of equations

is (66) where

-

a; = (rn_Fn—i—l,Fn-j)
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are the same sequences, as are the two sequences Zy,...,z, and Z1,...,Ln41. Lhis
information will be very valuable later.

The Q?’s are found by solving the linear system of equations (64). Since

d — ~ o

Trn = Zp = Yn = Tn41 — &n = Un, then (64) is equivalent to
k

Z(ﬁ‘n — Un—iy Up — Un-j)4j
=

l

(g — Un—iy®n), 1< <k, or

k
Z('&',. ~ Up—io1yUn — Un-j)q; = (Un—Up—i-1,%n), 0<i<k-1, or
Jj=1
k—1
Z(ﬁn - in-i—l’in - 'En—j—l )Qj+1 = (ﬁn - izn—i—l, a'n), 0 S. t S k — 1’
j=0

where ¢; = Qn. The system can be rearranged as follcws:
0 = _('a:n — Un—i-1,Un — un-—l)q1 + (ﬁn - un—-i—.‘.,ﬁn) -
k-1
Z(un — Un—iz1,Un = Un—j-1)Gj+1
i=1

= _"('En - En—i—lain)ql + (ﬁn - in—i-l,an) + (17,; - 'a‘n—i—l,a.n—l)q1 -

k-1 k-1
E(ﬁn - a’n—i—-laan)Qj+1 + E(ﬂn - ﬁ:n—i—lyﬁ:n—j—l)q;ﬁl
i=1 i=1
ke
= (ﬂ'.n - in—i—l)ﬁn)(l - —q2— """ — qk) + Z("In - ﬂ"n—i—l) ﬂn—j)qj'
=1
Set
b=(1-q1—¢—-—q) and lj=g¢;, 1<j<k.

It is easy to verify that 2§=1 l; = 1. Once again, we have established a one-to-one

correspondence between the ¢;’s, 0 < ¢ < k, and the l;’s, 0 < 7 < k. Hence, the

linear system of equations (64) for the g¢;’s is equivalent to the linear system

_’;=0 lj =1,

Zi=o(tn = Gneic1,Tng)lj =0, 0< i<k -1,
for the [;’s. As with the other two methods, the matrix for this system of equations

s (66) where

-

a; = (rn_Fn—i—l,Fn—j)
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= (ﬁn - ﬁn—i—laﬁn—j)- (79)
Therefore, the solution is

e < 9 <k, 80
g DQL,... 1 0sjsé (80)

Rearranging (78) and using the one-to-one correspondence, we have

k
:'jn+1 = 6:; = ‘2;. + E qj(zn—j - En)
Jj=1
k

= 41t Z ¢i(Zns1-5 — Znt1)
=1

= (1—-q1 =" —qe)Tn41 + @Tn + - + QkTnt1-k

= lg@pt1 + Uh&n + LZn1 + - + GeTns1-k
k

= Z lJ Tnpl-j-
—

Therefore, from (67) and (80), and letting n = k, we have

7 2":1 5 Z": N;Zus1-;
k+1 = j Chtl—j = = E—
J'=o J J J‘___oD[l’.oo,l]

D (Zis1y. .., 51
D[,... 1]

(81)

Anderson’s extrapolated vector with B, = 1 is quite different from the ex-
trapolated vector for the MPE and RRE methods. First the matrix elements a; ;
are, as before, different; but, in addition, we see that the first row of the matrix
is different. Instead of the sequence elements Zo,Z;,...,Z%; the row contains the
elements T 1, Thy--.y2L1.

Consider Anderson’s higher degree method with one change: let B, = 0 for all
n. Anderson said that this value should never be used, it is used here for theoretical
purposes only. Then the extrapolated vector will be

k
gn+1 = ﬁ‘:: = gﬂ + Z le(i""‘l - 5") (82)

=1
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Since all other factors remain the same as for the case where B, = 1, (82) can be
rewritten as
k
Jnt1 = €, =7n+t ,Z_-‘; 95(Yn-j = ¥n)
= Zn+ qi(Fno1 — Tn) + @2(Tn-2 — Fn) + -+ + gn(Tnk — Tn)
= (1-qu— = q)Zn + @1Fn-1 + @2Zn-2 + -+ + BTk

= lofn + llfn—l + lzfn-z + e+ qki‘n—k

k
= YU &ay. (83)

=0

As was done in deriving (81), (83) is used to obtain the extrapolation formula

- D[fk,...,fo]

Yer1 = TP, .., 1] (84)

where the elements a;; of Matrix (66) are defined by (@i — ¥r—i-1,Us-;). Hence,
for Anderson’s two cases, the extrapolated vectors have the same determinant form

with the exception of the first row of the numerator matrices.
Anderson vs RRE Comparison

Let R be the Matrix (66) defined for the RRE case, and let A be the matrix
defined for Anderson’s case with B, = 0 . By interchanging the columns of 4, A can
be rewritten as (Zo,...,Zx) where the new a; ; elements are (%) — @i—i—1,%;). Since
the interchanging of columns will be identical for both the numerator and denom-
inator matrices, the sign change, if any, will cancel out. Hence, the extrapolated
vector has not changed.

Since the two matrices, R and A, have identical second components for the
a;; elements, let us consider only the first components which are determined by the
variable 7, the row variable. By interchanging rows, we can rewrite 4 in such a way

that the j** column of A will have the form
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-

zj

(@r — To,T;)

(The = Ch—1,%;).
Once again, the extrapolated vector will remain the same since the sign change, if
appropriate, of the numerator and the denominator will cancel out. In order, for
i =2 to k —1, set the :** row equal to the i** row minus the (i + 1)* row. The

resulting j** column of matrix 4 will be

-~

z;
(@1 — o, @)

(2 — Uy,%;)

(Th — Te—1, ;).
This column is identical to the j** column of R. Therefore, the extrapolated vector
Yk+1 is the same vector for the RRE method and this special case of Anderson’s
higher degree method, B, = 0.
Now consider Equation (81) for Anderson’s method with B, = 1 applied to
the linear equation (4). Let a; = N;/D[1,...,1], 7=0,...,k. Then

k k k
Gosr = D Enaroj = ) a5 ABu-j = A (E a; 51:-:')

=0 i=0 j=0
- AR
which is one iteration of equation (84). Therefore, it is seen that, for the linear
case, the extrapolated vector for Anderson’s method with the B’s equal to unity is

identical to one iteration of the extrapolated vector for Anderson’s method with the

B’s equal to zero; hence, it is equivalent also to one iteration of the extrapolated

vector obtained by the RRE method. An example will follow to illustrate this fact.




Numerical Examples

Smith, Ford, and Sidi (1987) suggested using the Gauss-Seidel iteration scheme

applied to the linear equation (Wynn, 1962, Eq. (14)) F(Z) = AZ — b =0, where

2 1 3 4 10

1 -3 1 5 4

A= and b= (85)
3 1 6 -2 8
4 5 -2 -1 6

To define the Gauss-Seidel scheme, let a;;, 3,7 = 1,...,m, where m is the order of

A, be the (7,7) component of A. Define the matrices L and UP by

-

0 o -.. 0 0
as 0o .- 0 0
L = , (86)
| Qm1 Gm2 Am,m-1 0 ]
0 Qg v e Aim
0 0 -+ -+« @y
UP = (87)
Qm-1,m
0 0 o «u- 0

Also define D to be the diagonal matrix [a;1,a22y.-.,3mm|. Then the Gauss-Seidel
iteration is defined by

(D + L)Znyy = —(UP)Z, +b. (88)

When this scheme is applied to Problem (85), the result is a divergent sequence;
however, all three acceleration techniques obtain the solution, (1,1,1,1). If we let

k = 2, then the first extrapolated vectors, to five place accuracy, for the RRE
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method, 7, and Anderson’s method, @, with B, = 1, are

7 = (—0.17247,1.09243,0.67697,1.39913)7 and

@ = (0.64007,1.43756,1.24008,1.26795)7, respectively.

Applying an iteration to r shows that @ = F(7), as was shown and previously
discussed. This fact in itself would lead one to believe that for linear problems,
Anderson’s method has a major advantage over the RRE method. Now consider
another example, a nonlinear one.

In Chapter VIII, Problem (58) was used to compare the RRE method with
previously derived techniques. As noted in the last paragraph of Chapter VIII, the
RRE method and the MPE method seemed to be equivalent procedures since they
produced identical results for k = 2. One may wonder how this can be true since the
theory proven in this chapter shows that they are not equivalent. Let us examine
this problem more closely. The second and third rows of matrix (66) for the MPE,
RRE, and Anderson’s methods are given in Table 14 (page 89). Hence, matrix
(66) is different for each method. However, when the extrapolated vector for each
method is computed, we find that all four methods (MPE, RRE, and Anderson’s

method with B, = 0 and B, = 1) give identical resuits:
(0.774124,0.419430)T = 1.0805673, + 0.286985%; — 0.367552%,
for the RRE, MPE, and Anderson’s (B, = 0) methods and

(0.774124,0.419430)T = 1.080567%, + 0.286985%, — 0.367552%;

for Anderson’s method (B, = 1), where

Zo = (0.8,0.4)7, & =(0.8,0.48)7,

g, = (0.8704,0.4096)7, and &, = (0.925368,0.589824)T.
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TABLE 14

SECOND AND THIRD ROWS OF MATRIX (66) FOR THE MPE,
RRE, AND ANDERSON’S METHOD FOR PROBLEM (58)

MPE RRE
0.00640 —0.00563 0.01442 0.00802 —0.00319 0.02108
~0.00563 0.00991 —0.00882 0.02005 —0.01873 0.04432
ANDERSON

—-0.01203 0.01554 —0.02324
0.02005 —0.01873 0.04432

Equivalent results were expected for Anderson’s method with B, = 0 and the
RRE method; but, why did all four methods obtain the same results? Consider, for
the moment, only the MPE and RRE methods, and the difference between their
a;; elements of matrix (66). Substituting #ny; — %, for ¥, and carrying out the
determinant calculations, the resulting coefficients for Zy,z;, and &, respectively,

in terms of inner products with notation M0112 = (@, @1 )(41, Uz), are

M1122 - M0122 + M0112 — M1212 + M0212 — M0211,
M0212 — M0202 + M0102 — M0122 + M0022 — M0012, and
M0112 — M0012 + M0011 — M0211 + M0162 — M0101

for the RRE method and

M0112 — M0211, M0102 — M0012, and MO0011 — M0101

for the MPE method. Comparing the different coefficients, there is a difference of

M1122 — M0122 — M1212 + M0212,
M0212 — M0202 — M0122 + M0C22, and (89)
MO0112 — M0012 — M0211 + M0102




90
for Zy,Z1, and Z, respectively. In addition, the difference of D [1,...,1] for the two
extrapolations is

M1122 - 2M0122 + M0112 — M1212 + M0212 — M0211+ (90)

M0212 ~ M0202 + M0102 + M0022 — MJ012.

Define w0, wl, w2 to be the quotient of the expressions in (89) divided by (90) for

Zg,21, and Z3, respectively. The results are

w0 = 1.080567, wl = 0.286985, and w2 = —0.367552.

These values are the same values as their corresponding coefficients.

Consider the coefficient of one term of D [&o, £, Z2] for the MPE method. Let
"NM represent this value and let DM represent the value D (1,1,1]. In addition,
define DN as the difference (89) for the chosen coefficient and DD as the dif-
ference (90). As was shown in the previous paragraph, the quotients NM/DM
and DN/DD are equal. Setting this value to r, we have DN = DD(r) and
NM = DM(r). Also,

NM + DN = DM(r) + DD(r) = (DM + DD)r.

Therefore, (NM + DN)/(DM + DD) = r. Since this is true for each coefficient,
we see that the linear combination of Z;’s is the same for both methods.

Similar results can be shown for Anderson’s method with B, = 1. Though
the results showed equality for this case, it is easy to see that the two methods are

not equivalent. To show this fact by example, consider the problem

z = zl4+y’-z?

y = z,—y>+2°, and

z = —zp+y, +2%

One extrapolation of this problem gives
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(0.175810,—0.786335, —0.978136) for the MPE method,
(0.071951,0.020600, —0.039942) for Anderson’s, B, =1,
(0.236638,0.039550, —0.063152) for the RRE method, and
(0.236638,0.039550, —0.063152) for Anderson’s, B, = 0.

Hence, they are all different with the exception of the RRE and Anderson’s with
B, = 0 methods, as expected. The above results indicate that the MPE, the
RRE, and Anderson’s (B, = 0) methods are very similar for one extrapolation.
However, the first extrapolated vector for Anderson’s method (B, = 1), for the
linear case, is one iteration better than the RRE method. If the fact that Anderson’s
method is fully dynamic is also considered, then one might assume that Anderson’s
method (B, > 0) will accelerate a sequence to its correct limit faster than the other
techniques. In the next chapter, we will check the validity of this assumption by

testing Anderson’s method and the other methods on several types of test problems.




CHAPTER XI
NUMERICAL TEST PROBLEMS

In this chapter we compare the acceleration methods numerically. Test prob-
lems will include linear and nonlinear problems with dimensions varying from 4 up
to 8000. The problems were tested using FORTRAN coded programs. All problems
except Examples 9 and 10 were computed on a Kaypro 286 PC with double pre-
cision, giving a relative precision of 1 x 107!°. Examples 9 and 10 were computed
on a.IBM 3081K (VS FORTRAN) with double precision, giving a relative precision
of 2 x 10718, Dr. John P. Chandler, Oklahoma State University, developed the
main software for the semi-dynamic Vector Aitken (VA) method, Wynn’s original
Vector ¢ (Ve) method, the Modified Vector ¢ (MVe) method, the MPE method,
and Anderson’s (AND) method. I wrote the program for the RRE method and
made some modifications to Chandler’s Ve, MPE, and AND programs.

The resulis will be presented in figures which show graphs of the logarithm
(base 10) of the infinity norm of the difference vector, #@,_; = &, —Zn-1, as a function
of the number of iterations. Exceptions are Examples 9 and 10. Example 9 is the
graph of the infinity norm ot the error vector, &, = § - &, where §'is the solution.
Example 10 plots the Euclidean norm of the difference vector. The notation will be
log,o ||#n-1!|. The stopping criterion on all programsis ||@,|| < 1 x 107!5. Therefore,
this value, denoted by C15, will be considered as defining numerical convergence
for all problems.

Results were obtained for the basic iteration; all four variations of the VA

method; the Ve method; orders one, two, and three for the MVe method; and for k
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values of two through five (or the dimension of the problem if less than five) for the
RRE, MPE, and AND methods. In addition, the AND method was applied with
the relaxation option. However, this method never obtained results that matched
those of Anderson’s higher degree methods; hence, results of the relaxation method
will be shown for Example 1 only. In addition, the convergence of the VA, Ve,
and MVe methods were usually much slower than that of the AND, MPE, or RRE
methods. Therefore, the results of the VA, Ve, and MVe methods will not be shown
for examples where their results did not compare favorably with the other methods.
Because of the structure of the Ve method, the resalts will show the difference
vector of €2_,,if n is even, or €}_,, if n is odd. The RRE, MPE, and AND methods
consistently obtained the best results, faster convergence. For each of these three
methods, the results for the value of k£ which obtained fastest convergence for that
particular method will be shown. In addition, some examples will show results for
varying values of k for a particular method.

Before we continue, it should be understood that throughout this study we
have assumed that the fewest number of iterations implies the best results. This
is not always the case. Because of the sophistication of some of the methods and
the simplicity of the basic iteration scheme of some problems, more extrapolations
and fewer iterations may be more time consuming thar the convergence of the basic
iteration. However, this type of problem is not in the majority, and fewer iterations
usually means less computer time and better results.

EXAMPLE 1: The first example is a simple highly degenerate, linear problem
(Anderson, 1965, Eq. (5.1)). Define F(Z) of Equation (1) by

F(Z) = AZ — db =0,

where d is a free parameter and
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d, ifi=j
ag; =
1, if¢ #j.
Choose b such that the component elements of the solution & = (s1,...,8m)% is

8 =2/1, i =1,...,m. The matrix A can be written as A = L + UP + D, where

L and UP are defined by (86) and (87), respectively; and D is the diagonal matrix

[@11,--.,8mm]). Therefore, the problem can be rewritten in the Jacobian iteration
form

£=G(Z)=-D"YL+UP)Z + D"'db. (91)

For m = 20,d = 25, and %, = (1,...,1)7; the basic iteration sequence con-

verges in fifteen iterations. All six acceleration methods also obtain convergence
(results are not shown). The RRE, MPE, and AND methods converge after only
four iterations (k = 2). The Ve and MVe methods converge in 5 iterations, while
the VA method requires 18 iterations.

When d is set to 15, the problem is a little different because the basic iteration
scheme produces a divergent sequence. However, all acceleration methods obtain
the correct solution. Figure 20 (page 95) shows best results for all acceleration
methods except the VA method. Figure 21 (page 95) shows results of the basic
iteration, the VA method, the relaxation option of the AND method (relax), and
the MPE method for £ = 3 and 4. Best results are for order 2 for the MVe method
and k = 2 for the three methods using k values. As mentioned earlier, the VA
method is inappropriate for divergent problems unless the vectors Z,, and &,,, are
interchanged in the formula. The graph of the VA method as shown in Figure 21 is
without this change and is shown for comparison purposes only. The convergence
rate of the other five methods are similar.

One point of interest noted in Figure 20 is that the AND method converges
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Figure 21. Results for Example 1: VA, MPE
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for k > 2 in four iterations due to its ability to extrapolate after only two iterations
even though the final value of k may be larger than 2. For the RRE and MPE
methods, the number of iterations increases for k > 2 as shown in Figure 21 for the
MPE method with k = 3 and 4.

EXAMPLE 2: Consider the divergent linear problem (91) (Smith, Ford, and
Sidi, 1987). The iteration scheme for this problem was discussed in Chapter X,
and the results are shown in Figure 22 for the RRE, MPE, AND, and MVe meth-
ods. Even though the dimension of this problem is four, the degree of the minimal
polynomial is three since the matrix A has one zero eigenvalue. All three methods
are able to detect the zero eigenvalue as demonstrated by the fact that the best
results are obtained for k = 3 when the first iteration is discarded. In addition, the

AND method achieves machine accuracy (the norm of the difference vector equals

ITERATION

Figure 22. Results for Example 2: AND,
MPE, RRE, and MV¢
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zero) for k = 4 and the first iterate discarded. However, the numbe: of iterations
remains seven and the accuracy of the sixth iterate is not as high as the sixth iterate
for k = 3. If the first iteration is not discarded, the AND method still converges in
seven iterations while the RRE and MPE methods require one additional iteration
each to converge. However, for all three methods, the best results are obtained
with & = 4. The results of the MVe method are for order 3 with the first iterate
discarded.

There is another point of interest concerning this example. Since the problem
is linear and the degree of the minimal polynomial is three (k = 3), the exact solution
should be found by all three methods in k + 1 = 4 iterations and one extrapolation.
This was not done because computer computation is not exact arithmetic; hence,
rounding errors result and exact convergence in four iterations is not obtained.

Smith, Ford, and Sidi (1987) obtained a “wrong” solution for this problem
using the RRE method. The reason their RRE method failed to converge to the
correct solution is discussed in the Appendix.

EXAMPLE 3: For a final look at a linear case, we find the solution of the

system
5 7T 6 5 231
7T 10 8 T._ 32
T = ’
6 8 10 9 33
5 7 910j 31j

by use of the Jacobian iteration, (91), with an initial vector Z, = (0,0,0,0)T (Smith,
Ford, Sidi, 1987, Ex. 1). The solution is (1,1,1,1). One of the eigenvalues for this
problem is near 0.9985, causing the matrix I — A to be nearly singular. Figure
23 (page 98) gives the results for the RRE and MPE methods (k = 4), the AND
method (k = 4 and 3), and the MVe (order 3). This is a linear problem whose
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Figure 23. Results for Example 3: AND,
MPE, RRE, and MVe

minimal polynomial has degree four. Therefore, ignoring roundoff, convergence
should be obtained in k + 1 = 5 iterations and one extrapolation. However, once
again, this is not achieved due to rounding errors.

One observation is that whereas the AND methods converge in 7 and 11
iterations, the RRE and MPE methods do not converge to high accuracy in even 25
iterations. In fact, the convergence of these two methods does not improve in 250
iterations for any value of k. For both methods, the log of the difference vectors
fluctuates between —9 and —13 with no set pattern. As a result, the log of the
error vectors never gets smaller than —11. This inability to improve convergence
beyond a certain value is referred to as “limited accuracy.” The VA method and the
€ methods have the same difficulty on this problem only with much lower accuracy.

There were several variations made to the basic iteration scheme to attempt
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to achieve convergence. These included using combinations of different relaxation
factors, discarding the first few iterates, and discarding a set number of iterates at
the beginning of each extrapolation throughout the run of the program or only after
the limited accuracy had been achieved. However, no improvement was made as all
attempts eventually led to some value of limited accuracy.

Before investigating the cause of this limited accuracy problem, a few defi-
nitions are in order. Given the vector norm ||Z}|, define the norm, ||A4]], and the
condition number, cond(A), of the matrix A by

41 = sup el and cond(a) = aya~,
40 Z||

respectively (Conte and de Boor, 1980). For the linear system AZ = b, define the
relative error as %ﬂl where Z is the computed vector of £, and the residual error
by HE_I—IETIEH' It is shown by Golub and Van Loan (1983) how the condition number
and the relative errors in 4, Z, and b relate. If cond(A) = 1, then the relative error
and the residual error will be of the same order of magnitude; hence, Z is a good
approximation of . If the condition number is large, then a small change in the
data MAY cause a large change in the solution. In short, the condition number
“quantifies the sensitivity of the AZ = b problem” (Golub and Van Loan, 1983).
Ortega and Pc-le (1981) give the example that a condition number of 10® could
result in a loss of 6 decimal digits of accuracy. A matrix with a large condition
number is called an “ill-conditioned” matrix.

The RRE, MPE, and AND methods all involve solving a linear system Uz = b
to determine the extrapolated vector. Therefore, consider the condition number
of U for each extrapolation. For the k values shown in the Figure 22, the first
condition number for the RRE method is 10'® and for the MPE method is 10%°.

The remaining condition numbers vary between 10® and 10°. For the AND method,

the first condition number is 10* and the condition number for the matrix when
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convergence is obtained is 2.67. This is a major difference and could be a factor in
allowing Anderson’s method to overcome the limited accuracy problem.

Since the example is a small linear problem, it can be solved by Gaussian elim-
ination. The condition number of the matrix 4 is 50 and the computed solution
has a relative error of 0.1896 x 10~!2. The relative error of Anderson’s computed
solution is 0.2251 x 1072, The relative errors for the RRE and MPE methods never
obtain an accuracy higher than 0.4467 x 1071° and 0.1973 x 10~8, respectively. The
AND method, even with the low condition numbers, still cannot achieve quite the
same degree of accuracy that the Gaussian elimination method achieves. However,
when comparing acceleration methods, the AND method definitely shows superi-
ority in overcoming the problem of limited accuracy. The RRE method for Smith,
Ford, and Sidi (1987) failed to converge for this problem. See the Appendix for
more details.

EXAMPLE 4: The first nonlinear example is a quadratic problem with solu-
tions, (1,1,1,1) and (3,3,3,3) (Gekeler, 1972, Ex. V). Define G(Z) of equation (2)
by

G(Z) = AZ + b + Q(2),

where

3.9 —37 24 —06
24 —20 22 —0.6
24 —36 41 —0.9

2.8 -52 4.8 —0.4
b = -0.75(1,1,1,1)7, Q(Z)= -0.25(z%,2%,22,22)7, and

g = 1.5(1,1,1,1)T.

The basic iteration converges to the solution (3,3,3,3) in 52 iterations with a con-
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vergence criterion of 1 x 107!¢, C14; however, in 400 iterations the norm of the
difference vector never gets smaller than the normal convergence criterion, C15.

This problem has some unusual properties. Figure 24 (page 102) shows the
results of the basic iteration, the Ve method, the MVe method (order 4), and the
MPE and RRE methods with k£ = 4. Each of these methods converges to (3, 3, 3, 3).
Figure 25 (page 102) shows the convergence of the VA with @ equal to formula (33),
the AND method (k = 3), the MVe (order 3), and the MPE method (k = 1). These
four methods converge to the solution (1,1,1,1). In addition, Figure 25 shows the
convergence of Newton’s iterative method, the “most famous iterative method for
obtaining roots of equations (as well as for solving systems of nonlinear equations
...).” (Ortega and Poole, 1981, p. 128). Convergence is not obtained for the RRE
method (k < 4) and the MPE method (k = 2 and 3). For these methods, the
system either overflows or the limited accuracy is 107!,

A possible reason for this difference for the methods involving k values is the
matrix determined for computing the first extrapolated vector. For both methods
that converge to (3,3,3,3), the matrix is singular. As a result, the matrix of the
linear system has a rank smaller than k; hence, a linear system of smaller degree is
solved resulting in a first computed extrapolated vector near (3,3, 3,3). Remaining
iterates and extrapolations converge to this vector. The rank of the matrix for
the other converging methods is k and the resulting extrapolated vector is near
(1,1,1,1).

As stated in Chapter I, small nonlinear problems will in practice be solved
by methods other than those discussed in this thesis. To illustrate this point, this
problem is solved by Newton’s method. Let F(Z) = G(Z) — £, then Newton’s

method is the iterative formula

£

Tny1 = En + Yo, where F'(Zn)ygn = —F(Z,)
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Figure 24. Results for Example 4: Methods
Converging to (3,3,3,3)
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Figure 25. Results for Example 4: Methods
Converging to (1,1,1,1)
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for F'(Z,) the Jacobian matrix of F(Z) evaluated at Z,. As can be seen in Figure
25, all the methods that converge to (1,1,1,1) have some difficulty with limited
accuracy. However, Newton’s method and the AND method overcome this problem
and achieve convergence fairly quickly.

Example 5: The next example comes from Wynn (1964, Eq. (1)) and is
referred to as the Lichtenstein-Gershgorin integral equation. The iteration scheme

forn =0,1,...1s

k = k16,(t) k10, (m ~ t)
6, - -
+(2) T /o 1—kzcos(t+z) 1+ kzcos(t+z) at
k=1 sin(z)
+2arctan

[1 — cos(z)] [ks cos(z) — k-2)’

where
k= (B + 1)1 ky=ky(k*=1), ks=1—%"2%, and 6, =0.

The integrals are approximated by the trapezoid rule with end corrections:

[T @ dt=h {3t fit et fnat 30+ O (92)
for
= (A fo= Va) = oA o+ Vi) + o (Ao — V3fa) = = (Ao + V*£a),
12 24 720 160
where

Afo=fi— fo, A"fo = A™ fo — A" fo,
Vin=fa1=foy and V*fa =V*if, -V f.
Choosing m = 73 and z¢ = (0,...,0)7, the basic iteration converges in 136
iterations. Figure 26 (page 104) shows the graphs for the convergence of the RRE,
MPE, and AND methods with £ = 5, the MVe method (order 3), and the VA

method with Q equal to formula (33). As can be seen from the figure, this example
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ITERATION

Figure 26. Results for Example 5: AND,
MPE, RRE, VA, aad MVe

has very similar results. This problem does illustrate the importance of an accel-
eration method. Due to the nature of an integral equation problem, the computer
time required to compute one iterate is much more than any of the previous ex-
amples. Therefore, to decrease the number of iterations to less than one-fifth that
required by the basic iteration is a significant reduction in computer time and cost.
There are no other interesting points concerning the results of this example other
than the fact that this is the first example in which a method other than the AND
method even came close to having the best results. The AND method is still quite
competitive, however.

Example 6: The next examples are the integral equation problems (Anderson,

1965, Eqs. (5.10) & (5.11)):

(=) = 2"\/_/ f(t)( |)’ dt—% and (93)
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3rv2 1 2 |z -t 1 Tz
= I T gt~ —cos —= 94
f(z) 16 -1 f (t) cos 4 d 4 cos 4 ? ( )

with both solutions f(z) = cos(wz/4).

Letting m = 101, f, = (1,...,1)%, and integrating both problems with the
iteration scheme (92); Integral (93) converges in 75 iterations while Integral (94)
diverges. Results for Integral (93) are shown in Figure 27 (page 106). The AND
method clearly obtains the fastest convergence. Orce again, the RRE and MPE
methods (k = 2) have similar convergence. This example will also show how using
a convergent generated sequence in reverse order can affect the convergence rate. If
the MPE method (k = 2) is applied to the sequence S = {Zy,...,Zx+1}, the norm
of the thirteenth difference vector is 107! as compared to 10~!®* when the method
is applied to the sequence T' = {Zj+1,...,Z0}. In addition, it requires four more
iterations to converge to 1071%, Though there are exceptions to the rule, applying
the acceleration method to the sequence T instead of the sequence S usually reduces
the number of iterations for convergence if S is a corvergent sequence. Using the
most accurate estimate of the solution as the first term of the sequence will usually
cause faster convergence.

For Integral (94), the basic iteration scheme produces a sequence that diverges
quadratically, the logarithm of the norm of the difference vector roughly doubling
as n increases by one. Unlike many linear divergences, this divergence cannot be
“tamed” by using a relaxation factor in the interval (0,1). The two ¢ methods also
produce divergent sequences. Because the norm of the difference vectors increases
rapidly even for the first few iterates, the RRE and MPE methods for £ > 2 do
not obtain convergence. For k£ = 1, both methods converge, but the convergence is
slow as illustrated in Figure 28 (page 106). The graphs clearly show that the AND
method gives the best results. In fact, for all values of k, the results of the AND

method are almost identical.
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Example 7: This problem is the “model problem” of Varga (1962) and Young
(1971). It is designed to solve the Dirichlet probiem on a rectangle. Define R as the
interior of a rectangle, S as the boundary of the rectangle, and RU S as their union.
Let G(z,y) and g(z,y) be continuous functions defined on R and 5, respectively.
Then the desired solution is a function u(z,y) that is continuous on RU S, is twice
continuously differentiable on R, and satisfies Poisson’s equation

Ty 37“ - G(s,9). (95)
In addition, u(z,y) = g(z,y) on §. If G(z,y) = 0, tken (95) reduces to Laplace’s
equation.

The function u is found numerically by finding approximations to the function
at a finite number of interior points. These points are obtained by superimposing
a rectangular mesh of horizontal and vertical lines with uniform spacing. With
reference to Figure 29 (page 108), define (z¢,%0) and (z,,Ym), p and m integers,
as the lower left point and upper right point, respectively, of the rectangle. Also
define d = z, — o, w = Ym — Yo, b = d/p, and k = w/m. Then the spacing of
the rectangular mesh is h for the vertical lines and & for the horizontal lines. The
spacing in Figure 29 is A = d/3 and &k = w/4. Other points of the mesh are
(%i,¥;) = (2o + hi,yo + kj). Denote the functional value u(z;,y;),t =0,...,n and
J=0,...,m, by u;; = u(z;,y;). Hence the solution will be the approximations u;;.

Finite difference approximations to the second derivative with respect to z

and y are defined by

%t = [u(= + h,y) — 2u(2,y) + u(z — h,y)] /b and (96)
g_:,'li" = [u(z,y + k) ~ 2u(z,y) + u(z,y - k)] /K2,
respectively (Ortega and Poole, 1981). To simplify the problem, assume the re-

gion RU § is the unit square, h = k,(z¢,y0) = (0,0), and G(z,y) = g(z,y) = 0.
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Figure 29. Rectangular Mesh with Spacing of
h=d/3and k = w/4

Therefore, adding the two equations of (96) and using (95) result in a natural

iteration formula for the problem:
uTH = [ulP; + ol + ulD +ul] /4, (97)

i,j =1,...,p—1. Theright-hand side of (97) is referred to as the five-point Jacobian
operator.

The basic iteration generates a slowly convergent sequence as illustrated by
the fact that the infinity norm of the 272nd difference vector is only 0.944519 x 107
to six place accuracy. Figure 30 (page 109) shows the first 50 iterations of the best
results of the RRE, MPE, and AND methods. The other acceleration methods do
not work well on this problem. As an example, all three orders of the MVe method

converge slower than or similar to the basic iteration, as shown in the figure for
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Figure 30. Results for Example 7: AND,
MPE, RRE, and MVe

order three. This problem is a good example to illustrate how using a relaxation
factor other than unity and discarding a few iterations may provide a faster conver-
gence. Testing was done for relaxation factors between 0.5 and 1.5 and discarding
one to five iterations. Though not all variations produced faster convergence, better
results than those shown in Figure 30 were obtained for all three methods. Table
15 (page 110) gives some of the results obtained and the variations for the AND
and RRE methods. It should be noted that this is only the second test problem in
which another method matched the results of the AND method.

Example 8: This exa.mple is another nOnlinea.r integral equation (Ra.ll, 1969)
. (y)

for 0 < mo < 1. The background material for the equation is fairly elaborate (Chan-

drasekhar, 1960). Due to the natural iterative form of (98), the basic iteration
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TABLE 15

ITERATIONS REQUIRED FOR CONVERGENCE OF
EXAMPLE 7 WITH MODIFICATIONS TO THE
ANDERSON AND RRE METHODS3S WITH A
CONVERGENCE CRITERION OF 10-7

Method Relaxation Number of Discarded Number of

Parameter Iterations Iterations
AND 0.5 2 37
AND 1.0 1 45
RRE 0.5 1 45
RRE 1.0 1 44
formula is
_ 1 Fo(y)
Faya(z) =1+ (mo/2)Fa(z) /o S (99)

n=0,1,..., with Fo(z) =1, 0 £ z < 1. However, analytic difficulties do develop
involving the integration portion for finding F3(z). Rall showed that for Fy(z) =1,
for all z an element of the interval of integration, to be a satisfactory initial approx-
imation to the solution, wy is restricted by 0 < m < (v/2 ~1)/(In2) = 0.59758...
Therefore, he constructed a corresponding arithmetic model by introducing a “nu-
merical integration rule” of the form
1 m
[ £66) ds = 3w (o)
where s;, 0 < 5; <1, i =1,...,m, are nodes; the parameters w;, i = 1,...,m, are

weights; and m is the order of the rule. The integral portion of (98) becomes

' F(y) W
—=d 2 ; <z<1.
b ary @ LPsFw), 0se st (100)
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The solution F(z) is approximated by determining F(z;), 0 < z; <1,

i=1,...,m. Choosing z; = y;, i = 1,...,m and using (100), the value at z; is

hidd Ty W,y
F(z;) = 1+ (mo/2)F(z:) Y L F(z;).
i=1 Ti + 9::'
Letting b;; = ;‘:;;,, t,7 = 1,...,m, Equation (98) becomes

f= 14 (m/2f 38 fiy i=1,...,m,

=1
where f; = F(z;). Defining the m-dimensional vectors Z and I by £ = (f1,..., fm)T

and I = (1,...,1)T, respectively, the iteration formula takes the form

fn+1 = I+ (7r0/2)£n ®Bfﬂ)

where B = [b;;] and @ stands for the component-by-component multiplication of
the vectors: ¥® Z = (¥121,--++Ym2m) for ¥ = (¥1,-..,ym)T and 7= (z1,...,2m)7.
Table 16 gives the nodes and weights to seven places for the Gaussian integra-

tion rule of order nine (Milne, 1949). Using these vaiues and 7, = 0.1(z), for

i = 1,...,10, Rall obtained convergence to eight decimal places for all cases;

TABLE 16

NODES AND WEIGHTS FOR THE GAUSSIAN
INTEGRATION RULE OF ORDER NINE

8 Wy S w;
1 0.0159199 0.0406372 0.6621267 0.1561735
2 0.0819844 0.0903241 0.8066857 0.1303053
3 0.1933143 0.1303053 0.9180156 0.0903241
4 0.3378733 0.1561735 0.9840801 0.0406372
5 0.5000000 0.1651197
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TABLE 17

NUMBER OF ITERATIONS REQUIRED TO OBTAIN
CONVERGENCE ON RALL’S PROBLEM FOR
DiFFERENT VALUES OF =

o Number of o Number of
Iterations Iterations

0.1 7 0.6 17

0.2 8 0.7 21

0.3 10 0.8 28

0.4 12 0.9 43

0.5 14 1.0 10587

however, as my increased 30 did the number of iterations for convergence, Table
17 (Rall, 1969). Table 17 also shows that for mp = 1, convergence is extremely
slow, and according to Rall has limited accuracy. Because wo = 1 is by far the most
difficult case, the acceleration methods are applied to this problem for this case only.
Figure 31 (page 113) shows results obtained for the MPE, RRE, and AND methods
for the first 50 iterations. What the figure does not show is that this problem
is another example of limited accuracy for the RRE and MPE methods. Both
methods converge to C'10, but neither one converges to C'11 in 3000 iterations even
with modifications to the reiaxation factor and the number of iterations discarded.
It should be added that the AND method converges to C15 for all values of k > 2
in less than 132 iterations.

Example 9: The next example has the largest dimensional value of all the test
problems. It approximates the steady-state solution of the scalar three-dimensional
Burger’s equation

ue + u(uz + uy + u,) = €Au, (101)
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Figure 31. Results for Example 8: Rall’s
Problem with mp =1

on the unit cube (Hyman and Manteuffel, 1984). Th= parameter ¢ represents time;
Ug, Uz, Uy, and u, are the partials of u with respect to t,z,y, and z, respectively;

and A is the Laplacian operator

0%*u + 8%*u + %u
8z2  Oy? 827

(102)

Hyman and Manteuffel tested an acceleration method they developed by studying
the convergence of a second-order Runge-Kutta method for this problem using

€ = 0.02 and the Dirichlet boundary conditions
u(0,y,z) = u(z,0,2) = u(z,y,0) =0 and
u(l,y,z) = u(z,1,2) = u(z,y,1) =1

to provide a thin boundary layer. In addition, a time step of At = 0.5(Az) was

chosen. As in Example 7, a second order finite difference equation was used to

B
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approximate the solution on a uniform grid of N points. They gave results for
N = 8000 (a 20 x 20 x 20 grid of points) (Hyman and Manteuffel, 1984, p. 312).
The exact structure of their test case is not clear. First, there is a class of
second order Runge-Kutta integration methods, and Hyman and Manteuffel do not
mention which one of these methods they used. Gear (1971) defined the two-step

calculation of a Runge-Kutta method as

g1 = Ynt ahf(yn, tn)

Ynt1 = Yn + DR f(Yn,tn) + chf(qr,tn + dR),

where dy/dt = f(y,t); a,b,c, and d are parameters; and A = Az. To make the
expansion of yn4+1 and the Taylor series agree as closely as possible, the relationship
between the parameters must be b = 1 — ¢ and a = d = ¢/2. Therefore, the basic

iteration formula for Burger’s equation with u = y, At = 0.5h, and u, = f(y,t) is

@ = Un+ a(At)(ue)n

Unt1 = up+ (A (ue) + c(A)(ue)nt1,

where (u¢)n41 is u, evaluated at ¢; and ¢, + dh. Three common second order Runge-
Kutta methods are for ¢ = 1/2, 3/4, and 1 (Gear, 1971, p. 31). A second unclear
area is whether the number of grid points, N, includes the boundary points. Because
the software and the exact parameters for their test problem were not available, the
results shown for this example are for N = 8000 to be the number of interior points
and for ¢ = 1/2. Results of the basic iteration do not exactly match those shown
by Hyman and Manteuffel; however, the problem is still a good test problem due
to the size of its dimension.

Results obtained for this problem are shown in Figure 32 (page 115) for the
AND (k = 4), MPE (k = 3), RRE (k = 1), and MVe (order 3) methods for the

first 50 iterations. In addition, the graphs plot the infinity norm of the error vector,
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Figure 32. Results for Example 9: Hyman and
Manteuffel’s Test Problem

€n-1 = §—Zpn_1, instead of the difference vector. The change is to match Hyman and
Manteuffel’s test problem as close as possible. The only methods that consistently
increase the convergence rate are the AND and MPE methods. The other methods
do not work very well for this problem. In fact, the convergence of the MPE and
RRE methods is not smooth as illustrated by the periodic peaks in their graphs
even though the basic iteration generates a convergent sequence. In addition, the
MPE method is very erratic. Hence, these two extrapolation methods have their
problems in this example.

Example 10: The last example comes from Moler (1967). The problem is
to solve for the eigenvalues and eigenfunctions of the Laplacian operator, Equa-

tion (102) in two variables only, on an “L” shaped region L, Figure 33 (page 116).
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Figure 33. “L” Shaped Region for Example 10

The eigenvalues ¢ and the functions u(p), not identically zero, are to satisfy

Au(p) + qu(p) =0, p=(z,y) an element of L

(103)

u(p) =0,p an element of L.

Since there are infinitely many eigenvalues, only the smallest one is considered.

Once again, the solution is approximated using finite differences over a square

mesh of width h = 1/N, N an integer. Letting u;; = u(z;,y;), the five-point

Laplacian operator is define by

ALu.-,- = [u.-+1,,~ + Ui+ Uiger + U1 — 4u;j] /hz. (104)

However, direct iteration of the Laplacian operator will produce the largest eigen-

value. The smallest eigenvalue can be found by use of the five-point Jacobian

operator:

Ajuij = [Uipr; + tiorg + Ui + ijoa] /4. (105)
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Figure 34. Results for Example 10: AND,
MPE, RRE, MV¢, and Ve

Denote g1 and g; as the eigenvalues of the Laplaciar and Jacobian operators, re-

spectively. Using equations (103), (104), and (105), the following relationship holds:

g = [wiprg +wicy; + i + o — dug) /Ry
= 4[(wip1,j + viorj + Uiger +uijor)/4ug — 1] /AP

= 4(qs —1)/Rh% (106)

Hence, the approach of finding g, the smallest eigenvalue, is to solve the problem
by using (105) and then convert the solution from an eigenvalue of the Jacobian
operator to one of the Laplacian operator by the Relation (106).

Figure 34 shows the results for the first 50 iterations for the AND, RRE,
MPE, and both € methods. For this last problem, the graphs plot the log of the

Euclidean norm of the difference vector instead of the infinity norm. The RRE and
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MPE methods do not work well on this problem. In fact, for values of £ not shown
in Figure 34, the convergence is slower than that oktained by the basic iteration.
The AND and Ve methods do accelerate the convergence, but even the accelerated
convergence is slow. However, the solution can be cbtained in fewer iterations by
applying either one of these methods. (Note that the Ve method has enormous

storage and time requirements in this example.)




CHAPTER XII
THE GENERALIZED MINIMUM RESIDUAL ALGORITHM

Information on another acceleration method, the Generalized Minimum Resid-
ual (GMRES) algorithm, was received just prior to the completion of this thesis.
Because of the time factor and the complexity of the software of the method, test-
ing of the method was minimal. The GMRES algorithm was developed for linear
systems by Saad and Schultz (1986). The method has had further development
by Kerkhoven and Saad (1987), Brown and Saad (19€7), and Burkhart and Young
(1988). There now exist routines for both linear and nonlinear problems. Discussion
of this method will be sketchy.

The nonlinezr GMRES method resembles Newton’s method for solving a sys-
tem of nonlinear equations. However, GMRES reduces the effective dimension of
the solution space. The method involves finding an orthonormal basis of the Krylov
subspace K}, = span{v;, Av,...,A* v, }, where A is the matrix of the linear sys-
tem AZ = b and ¥ is the normal vector 97 = /7, To = b — AZy. The basis is
found by a procedure called Arnoldi’s algorithm.

Software for GMRES was obtained from Burkhert and Young (1987) of Boe-
ing Computer Services. The test driver program that was provided for the nonlin-
ear GMRES routine solved Laplace’s equation on a square mesh, using an SSOR
(symmetric successive over-relaxation) iteration (Varga, 1962) with a mesh size of
h = 1/22 and optimizing the over-relaxation factor OMEGA automatically dur-
ing the process. Nonlinear GMRES solved this problem to full double precision

accuracy using a total of 129 sweeps of SSOR over the grid.
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Anderson’s method (k = 5) on this problem, wi:a OMEGA set to 1.75, which
is near the optimum value, requires only about 60 iterations to achieve full double
precision accuracy. However, the GMRES software is organized in a very conserva-
tive way in order to avoid divergence. If similar search strategies were used in the
Anderson routine, the number of iteration would be increased considerably. (Such
search strategies should be an option of the software, used only when divergence is

anticipated or detected.)




CHAPTER XIII
SUMMARY AND CONCLUSIONS

The intent of this thesis was to demonstrate the importance of acceleration
methods and to compare several of these methods both theoretically and numeri-
cally. For each method, the theory and the algorithin were derived for the linear
case. However, through numerically testing the algorithms on different types of
problems, it was shown that the methods can be applied to both linear and nonlin- -
ear problems.

Clearly, the purpose of acceleration methods is to reduce the number of it-
erations required to solve numerically a mathematical problem in a vector space.
All methods presented in this thesis demonstrate the capability of achieving this
purpose, though the convergence rate may vary for different problems. This in itself
is of great value since for the majority of practical problems reducing the number
of iterations also reduces the computer time and cost. In addition, acceleration
methods also have demonstrated the capability of accelerating some divergent se-
quences to the solution of a problem. Therefore, a greater number of problems
may be solved numerically by applying an acceleration technique to the generated
sequence.

There are three categories of acceleration models: the static model, the semi-
dynamic model, and the fully dynamic model. If an extrapolation accelerates the
convergence, then one may suspect that the fully dynamic model will provide the
fastest convergence, since extrapolation is accomplished after every iterate once the

first extrapolation is done. The only fully dynamic method for vectors presented,
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Anderson’s Generalized Secant Method, proves this intuition right. For all but a
few test problems, Anderson’s method is clearly superior in the number of iterations
required for convergence. Even for the exceptions, Ancerson’s convergence rate was
almost identical to the method that obtained the best results. In addition, there was
not one test problem for which Anderson’s method failed to converge to the solution.
There were test cases, Examples 3 and 8, where the other methods had the problem
of limited accuracy, the inability to achieve convergence with a precision of C'15 even
though convergence to a poorer precision is obtained. For these problems, making
variations to the method by combining different relaxation parameters with different
amounts of discarded iterates still did not achieve 15 convergence. Therefore,
it is the author’s conclusion that Anderson’s methoa will consistently solve most
numerical problems in fewer iterations than the other methods studied in this thesis,
and that it is less susceptible to limited accuracy than are the other methods.

As stated previously, it should be emphasized that because Anderson’s method
does require an extrapolation every iteration after the first extrapolation, the com-
puter time required to solve some fast iterative problems may be more than if the
method is not applied. However, for most problems, especially integral equation
problems and problems with a divergent generated sequence, fewer iterations is
definitely desired; hence, Anderson’s method will usually provide the best results.

Another area I want to stress is the reversing of the generated sequence when
applying the RRE and MPE methods to a convergent generated sequence. Test
results show that this procedure will produce better results (though there were a
few exceptions for certain k values and a particular problem) than if the sequence
is not reversed. For a divergent sequence, results prove that the original sequence
produces the best result. In almost all test problems, the RRE and MPE methods
gave similar results. Even though these two methods seldom equaled Anderson’s

method, they consistently outperformed the vector Aitken and the vector ¢ methods.
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There are still areas of study that can be investigated. First, the GMRES
method of Chapter XII can be fully tested and compared with the other methods.
A second area that can receive future study is trying to convert either the RRE or
MPE methods into a fully dynamic model. By using the principle introduced by
Irons and Shrive (1987) in Chapter IV for the scalar case, perhaps a fully dynamic
model can be derived for the RRE and/or the MPE methods.
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APPENDIX

CORRECTIONS TO ARTICLE WRITTEN BY
SMITH, FORD, AND SIDI (1987)

David A. Smith, William F. Ford, and Avram Sidi wrote an article, “Extrap-
olation Methods for Vector Sequences,” in the SIAM Review, Vol 29 (1987) com-
paring acceleration techniques. These methods included the vector epsilon method
with both types of inverses, the generalized and the >rimitive; the MPE method;
and the RRE method. Several of the comments in the paper concerning their test
results are not correct. This Appendix details the errors and corrections needed, if
appropriate.

In their Example 2 (Example 2 in Chapter XI also), they claim that the
RRE and Vector Epsilon methods “converge” to a vector approximately equal to
(13.36,—1.940,5.532, —5.342). This is not the case. Both methods converge to
the unique solution (1,1,1,1). When converting the problem to the Gauss-Seidel
iteration scheme (88), they continued to use the original vector b= (10,4,8,6)T
instead of the converted vector (D + L)' = (5,1/3,-11/9,163/9)T. As a result
they determined the solution of a different fix point problem, and their method
converged to the correct solution for their incorrect problem. Using the correct
converted vector, the RRE and Vector Epsilon methods converge nicely to the
solution (1,1,1,1).

They also state that because the system has a zero eigenvalue, the system of
equations is singular for k = 4. However, for the initial vector they used, (0,0,0,0),

the error vector does not lie in a subspace spanned by any three eigenvectors of the
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iteration matrix, and the system is not singular for this starting point and value
of k. As a result, the MPE method is exact, in the absence of rounding error, for
k = 4 but not for k = 3. If the initial iterate is discarded, as discussed in Chapter
XI, then k = 3 is appropriate.

For their Examples 1 and 8 (Examples 3 and 4 in Chapter XI), they stated
that the RRE method failed to converge to the correct solution. Test results show
that the RRE method does converge to the solution in both cases. For the first
example, convergence is very similar to that obtained by the MPE method and is
obtained for all values of k, though the convergence is hampered by the problem of
limited accuracy. The second example is a problem with two solutions. The RRE
method (k = 4) converges to the same solution as the basic iteration, (3,3,3,3).
However, it should be noted that for £k < 4 the RRE method caused system overflow

for this problem.
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